[1] |
SGROI M, ROCCARO P, OELKER G, et al. N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers[J]. Chemosphere, 2016, 144: 1618-1623. doi: 10.1016/j.chemosphere.2015.10.023
|
[2] |
蔡宏铨, 裴赛峰, 张昀, 等. 我国城市饮用水中N-亚硝基二甲胺分布水平与健康风险评估[J]. 环境与职业医学, 2021, 38(11): 1231-1236,1243.
CAI H Q, PEI S F, ZHANG Y, et al. Distribution and health risk assessment of N-nitrosodimethylamine in urban drinking water in China[J]. Journal of Environmental and Occupational Medicine, 2021, 38(11): 1231-1236,1243 (in Chinese).
|
[3] |
WHO. IARC monographs on the evaluation of carcinogenic risks to humans; proceedings of the Conference of the IARC monographs on the evaluation of carcinogenic risks to humans, Lyon, FRANCE, F Oct 10-17, 2006 [C]. World Health Organization: GENEVA, 2010.
|
[4] |
SGROI M, VAGLIASINDI F G A, SNYDER S A, et al. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal[J]. Chemosphere, 2018, 191: 685-703. doi: 10.1016/j.chemosphere.2017.10.089
|
[5] |
CHEN W H, WANG C Y, HUANG T H. Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern[J]. Chemosphere, 2016, 161: 546-554. doi: 10.1016/j.chemosphere.2016.07.027
|
[6] |
KIM D, AMY G L, KARANFIL T. Disinfection by-product formation during seawater desalination: A review[J]. Water Research, 2015, 81: 343-355. doi: 10.1016/j.watres.2015.05.040
|
[7] |
WEBSTER T S, CONDEE C, HATZINGER P B. Ex situ treatment of N-nitrosodimethylamine (NDMA) in groundwater using a fluidized bed reactor[J]. Water Research, 2013, 47(2): 811-820. doi: 10.1016/j.watres.2012.11.011
|
[8] |
DAI X D, ZOU L D, YAN Z F, et al. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons[J]. Journal of Hazardous Materials, 2009, 168(1): 51-56. doi: 10.1016/j.jhazmat.2009.01.119
|
[9] |
SGROI M, ROCCARO P, OELKER G L, et al. N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility[J]. Water Research, 2015, 70: 174-183. doi: 10.1016/j.watres.2014.11.051
|
[10] |
WANG X F, YANG H W, ZHOU B H, et al. Effect of oxidation on amine-based pharmaceutical degradation and N-Nitrosodimethylamine formation[J]. Water Research, 2015, 87: 403-411. doi: 10.1016/j.watres.2015.07.045
|
[11] |
SZCZUKA A, HUANG N, MacDONALD J A, et al. N-nitrosodimethylamine formation during UV/hydrogen peroxide and UV/chlorine advanced oxidation process treatment following reverse osmosis for potable reuse[J]. Environmental Science & Technology, 2020, 54(23): 15465-15475.
|
[12] |
ALONSO F, BELETSKAYA I P, YUS M. Metal-mediated reductive hydrodehalogenation of organic halides[J]. Chemical Reviews, 2002, 102(11): 4009-4092. doi: 10.1021/cr0102967
|
[13] |
LI M H, HE J, TANG Y Q, et al. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon[J]. Chemosphere, 2019, 217: 742-753. doi: 10.1016/j.chemosphere.2018.11.007
|
[14] |
YU L, LI D, XU Z Y, et al. Polyaniline coated Pt/CNT as highly stable and active catalyst for catalytic hydrogenation reduction of Cr(VI)[J]. Chemosphere, 2023, 310: 136685. doi: 10.1016/j.chemosphere.2022.136685
|
[15] |
STRUKUL G, GAVAGNIN R, PINNA F, et al. Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: From powders to membranes[J]. Catalysis Today, 2000, 55(1/2): 139-149.
|
[16] |
ZHOU J, HAN Y X, WANG W J, et al. Reductive removal of chloroacetic acids by catalytic hydrodechlorination over Pd/ZrO2 catalysts[J]. Applied Catalysis B:Environmental, 2013, 134/135: 222-230. doi: 10.1016/j.apcatb.2013.01.005
|
[17] |
WU K, ZHENG M J, HAN Y X, et al. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts[J]. Applied Surface Science, 2016, 376: 113-120. doi: 10.1016/j.apsusc.2016.03.101
|
[18] |
ZHENG C L, MAO D J, XU Z Y, et al. Strong Ru-CeO2 interaction boosts catalytic activity and stability of Ru supported on CeO2 nanocube for soot oxidation[J]. Journal of Catalysis, 2022, 411: 122-134. doi: 10.1016/j.jcat.2022.04.030
|
[19] |
RO I, RESASCO J, CHRISTOPHER P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts[J]. ACS Catalysis, 2018, 8(8): 7368-7387. doi: 10.1021/acscatal.8b02071
|
[20] |
WANG Z, HUANG Z P, BROSNAHAN J T, et al. Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion[J]. Environmental Science & Technology, 2019, 53(9): 5349-5358.
|
[21] |
HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2014, 158/159: 96-105. doi: 10.1016/j.apcatb.2014.01.062
|
[22] |
TAN H Y, WANG J, YU S Z, et al. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(14): 8675-8682.
|
[23] |
DONG F, MENG Y, HAN W L, et al. Morphology effects on surface chemical properties and lattice defects of Cu/CeO2 catalysts applied for low-temperature CO oxidation[J]. Scientific Reports, 2019, 9: 12056. doi: 10.1038/s41598-019-48606-2
|
[24] |
GAO X Q, ZHU S H, DONG M, et al. Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone[J]. Journal of Catalysis, 2020, 389: 60-70. doi: 10.1016/j.jcat.2020.05.012
|
[25] |
TAN L, LI T, ZHOU J, et al. Liquid-phase hydrogenation of N-nitrosodimethylamine over Pd-Ni supported on CeO2-TiO2: The role of oxygen vacancies[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558: 211-218.
|
[26] |
LIU P C, NIU R Y, LI W, et al. Morphology effect of ceria on the ammonia synthesis activity of Ru/CeO2 catalysts[J]. Catalysis Letters, 2019, 149(4): 1007-1016. doi: 10.1007/s10562-019-02674-1
|
[27] |
ASSMANN J, NARKHEDE V, KHODEIR L, et al. On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy[J]. The Journal of Physical Chemistry B, 2004, 108(38): 14634-14642. doi: 10.1021/jp0401675
|
[28] |
YEE N, CHOTTINER G S, SCHERSON D A. Carbon monoxide adsorption on Ru-modified Pt surfaces: time-resolved infrared reflection absorption studies in ultrahigh vacuum[J]. The Journal of Physical Chemistry B, 2005, 109(12): 5707-5712. doi: 10.1021/jp044641i
|
[29] |
FORCE C, BELZUNEGUI J P, SANZ J, et al. Influence of precursor salt on metal particle formation in Rh/CeO2 catalysts[J]. Journal of Catalysis, 2001, 197(1): 192-199. doi: 10.1006/jcat.2000.3067
|
[30] |
DONG Z P, LE X, DONG C X, et al. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol[J]. Applied Catalysis B:Environmental, 2015, 162: 372-380. doi: 10.1016/j.apcatb.2014.07.009
|
[31] |
LIU H, LONG L, XU Z Y, et al. Pd-NCQD composite confined in SBA-15 as highly active catalyst for aqueous phase catalytic hydrodechlorination of 2, 4-dichlorophenoxyacetic acid[J]. Chemical Engineering Journal, 2020, 400: 125987. doi: 10.1016/j.cej.2020.125987
|
[32] |
周娟, 陈欢, 李晓璐, 等. Pd/CeO2催化水中溴酸盐的加氢还原研究[J]. 中国环境科学, 2011, 31(8): 1274-1279.
ZHOU J, CHEN H, LI X L, et al. Study on liquid phase catalytic hydrogenation of bromate over Pd/CeO2 catalyst[J]. China Environmental Science, 2011, 31(8): 1274-1279 (in Chinese).
|
[33] |
SUN Y H, SUN S, WU T Y, et al. Highly effective electrocatalytic reduction of N-nitrosodimethylamine on Ru/CNT catalyst[J]. Chemosphere, 2022, 305: 135414. doi: 10.1016/j.chemosphere.2022.135414
|
[34] |
LI M H, SUN Y H, TANG Y Q, et al. Efficient removal and recovery of copper by liquid phase catalytic hydrogenation using highly active and stable carbon-coated Pt catalyst supported on carbon nanotube[J]. Journal of Hazardous Materials, 2020, 388: 121745. doi: 10.1016/j.jhazmat.2019.121745
|