-
塑料由于轻便、耐腐蚀、化学性质稳定、成本低等优点,广泛应用于工业、医药、农业等各个领域[1 − 3]. 常用的微塑料种类按材料划分包括聚苯乙烯 (PS)、聚乙烯 (PE)、聚丙烯(PP)、聚氯乙烯(PVC)和聚对苯二甲酸乙二醇酯(PET)[4] . 预计到2025年,全球塑料的累计产量将达到2.5亿t[5]. 全球塑料产量由于成本低增长迅速,产生大量的塑料垃圾. 这些塑料垃圾会通过一系列自然过程破碎成更小的颗粒[6]. 微塑料 (microplastics,MPs) 通常指直径小于5 mm的颗粒、纤维或薄膜,其所占环境中塑料碎片数量最多[7]. 微塑料分布广泛、难以降解,目前构成严重的全球环境问题[8]. 研究表明,全球产生的塑料约有1.5%—4.5%直接释放到海洋中[2 − 3]. 不仅如此,每年释放到陆地上的微塑料质量可能超过40万t,是释放到海洋中的4—23倍[9 − 10]. 废弃的微塑料流入环境后易被生物体摄入,从而对其生长发育、氧化应激和生殖系统等造成负面影响[11, 12]. 因此,环境中微塑料造成的污染问题已引起海内外广泛重视.
环境中微塑料可以通过机械力、光照、化学物质、高温和生物等因素发生物理、化学和生物老化[13 − 15]. 老化后微塑料表面形貌和理化性质发生显著改变,例如表面形貌、粒径、比表面积和氧官能团等,从而影响其环境行为[16-17]. 首先,环境中微塑料老化后粒径减小,改变了生物体对微塑料的摄入方式和数量[18 − 20],使其更易被生物体摄入,从而影响微塑料的生态毒性[21-22]. 例如微塑料老化过程中破碎为粒径更小的颗粒甚至为纳米塑料,更易被无脊椎动物(如贻贝和牡蛎幼虫)摄入,表现出更强的毒性[23 − 24]. 其次,环境中的微塑料可以作为载体富集环境中的污染物,主要包括有机污染物、重金属和微生物[25 − 30]. 老化过程显著改变了微塑料吸附有机污染物的能力. 微塑料老化后表面粒径减小、比表面积增大,吸附位点增多;同时表面生成更多含氧官能团,导致亲水性、极性和电负性增加,进而影响对有机污染物的吸附性能[13, 31]. 此外,老化过程不仅影响污染物富集有机污染物的性能,而且随着生物体的摄食行为,老化微塑料将污染物载带至生物体内,导致生物体的毒性增强,进一步增加了微塑料的生态风险[32 − 34]. 因此,微塑料的老化对环境行为和生态风险有重大影响.
微塑料自然老化过程缓慢且复杂,化学老化由于氧化能力强而用于模拟和加速微塑料的老化过程[35]. 在此,本文综述了化学老化微塑料物理化学性质的改变,探讨了化学老化微塑料吸附有机污染物的研究现状,结合吸附动力学模型和等温吸附模型,以期对化学老化微塑料的环境行为和生态风险评估提供参考.
微塑料的化学老化过程及吸附有机污染物的研究进展
Research progress on chemical aging microplastics and the adsorption of organic pollutants
-
摘要: 微塑料的环境行为和生态影响如今备受瞩目,环境中微塑料受光照、化学物质、机械力和生物等因素而老化,影响其环境行为和归趋. 化学老化可以产生具有强氧化能力的活性氧引起自由基链式反应,导致微塑料物理化学性质发生显著改变,进而影响其对污染物的吸附性能. 高级氧化过程是常见的化学老化方法,用于模拟和加速微塑料的自然老化. 此外,微塑料作为载体吸附环境中的有机污染物是近年来研究的热点. 本文阐述了化学老化过程中微塑料的表面形貌、粒径、含氧官能团和亲疏水性等物理化学性质的变化,总结了微塑料化学老化的方法(例如芬顿、过氧化氢、过硫酸盐、臭氧和光复合老化)及机制;同时综述了化学老化微塑料吸附疏水性有机污染物和亲水性有机污染物的研究现状,并结合吸附动力学和吸附热力学模型,进一步明确化学老化对微塑料吸附有机污染物的影响. 最后,基于此对微塑料化学老化存在的问题和后续研究方向提供了展望.Abstract: The environmental behavior and ecological impact of microplastics have been in the spotlight nowadays. Microplastics are subject to aging by sunlight, chemical substances, mechanical forces, and biofilm, which affect their environmental behaviors and fate in the environment. Chemical aging can generate reactive oxygen species with strong oxidative capacity, which induces free radical chain reactions, resulting in significant changes in the physicochemical properties of microplastics, thereby affecting the absorption performance towards pollutants by microplastics. Advanced oxidation processes are common chemical aging methods used to simulate and accelerate the natural aging of microplastics. Additionally, the adsorption of organic pollutants in the environment by microplastics as carriers has been a hot research topic in recent years. This paper elaborates the variations of physicochemical properties, including surface morphology, particle size, oxygen-containing functional groups, hydrophilicity and hydrophobicity on microplastics chemical aging. We also summarize the methods and mechanisms of chemical aging microplastics (e.g., Fenton, hydrogen peroxide, persulfate, ozone, and combined technologies based on light irradiation and AOPs). Meanwhile, the current research status on the adsorption of hydrophobic organic pollutants and hydrophilic organic pollutants by chemical aging microplastics are reviewed, combined with adsorption kinetics and adsorption thermodynamics models to further clarify the effects of chemical aging on the adsorption of organic pollutants by microplastics. Finally, the existing problems and potential research directions about microplastics chemical aging in the future are proposed.
-
Key words:
- microplastics /
- chemical aging /
- adsorption /
- organic pollutants /
- research status.
-
表 1 微塑料的化学老化
Table 1. Various chemical aging process of MPs
化学老化方式
Chemical aging
Process微塑料类型
Type
of MPs时间
Time老化程度
Aging degree参考文献
Reference羰基指数
Carbon index氧碳比
O/C芬顿 PS 7 d C—O, H—O, C=O和O—C=O键形成 [38] PE,
PS30 d 0.01—0.4
0.03—0.200.01—0.13
0.01—0.1[40] PE,PP,
PS,PA,
PET1 d 0.006—0.0
0.001—0.02
0.003—0.013
0.64—0.47
7.34—7.36[54] H2O2 PS 7 d C—O, C=O和O—C=O键形成 [38] PVC 30 d C—O, C=O和H—C—Cl键形成 [51] 热活化过硫酸盐 PE,
PS30 d 0.01—0.36
0.03—0.690.01—0.26
0.01—0.34[40] PP 40 d 0.02—0.09 [57] 臭氧 PS < 1 d
(3 h)22.8—1.6 [18] LDPE 3 h 0.004—0.10 [55] 光-芬顿 PS 4.5 d 0.03—0.32 0.01—0.12 [19] PS 5 d 0.03—0.27 0.01—0.11 [20] 光- H2O2 PS 4 d 0.36—0.61 [81] PA 90 d 0.43—0.60 [82] 光活化过硫酸盐 PS 8 d 0.40—0.65 [43] 表 2 化学老化微塑料吸附有机污染物的动力学和等温线模型研究
Table 2. Studies on kinetics and isotherm models in the adsorption of organic pollutants on chemical aging MPs
老化方式
Aging process微塑料类型
Type of MPs污染物
Pollutants最佳拟合模型
Best fit model参考文献
Reference动力学模型
Kinetic models等温线模型
Isotherm
models芬顿 PS,PET,
PP,HDPE双氯芬酸
甲硝唑伪二级模型 Langmuir模型 [42] PE,PS 环丙沙星 伪二级模型 Langmuir模型 [40] H2O2 PA,PP 腐殖酸 伪二级模型 Freundichm模型 [84] PS,PET 四环素 伪二级模型 Freundichm模型 [48] 热活化过硫酸盐 iPP 三氯生 伪一级模型 Freundichm模型 [57] PE,PS 四环素 伪二级模型 Freundichm模型 [77] 光-芬顿 PS 托伐他汀
氨氯地平伪二级模型 Langmuir模型
Freundichm模型[19] PS 牛血清蛋白 伪一级模型 Freundichm模型 [20] 光- H2O2 PS 双酚A 伪二级模型 Freundichm模型 [81] PS 芳香化合物 伪二级模型 Freundichm模型 [80] -
[1] CHAE Y, AN Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J]. Environmental Pollution, 2018, 240: 387-395. doi: 10.1016/j.envpol.2018.05.008 [2] LI J, SONG Y, CAI Y B. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 2020, 257: 113570. doi: 10.1016/j.envpol.2019.113570 [3] NIZZETTO L, BUSSI G, FUTTER M N, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science. Processes & Impacts, 2016, 18(8): 1050-1059. [4] XU S, MA J, JI R, et al. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects[J]. Science of the Total Environment, 2020, 703: 134699. doi: 10.1016/j.scitotenv.2019.134699 [5] ENFRIN M, DUMÉE L F, LEE J. Nano/microplastics in water and wastewater treatment processes - Origin, impact and potential solutions[J]. Water Research, 2019, 161: 621-638. doi: 10.1016/j.watres.2019.06.049 [6] CHEN H B, HUA X, YANG Y, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 2021, 419: 126482. doi: 10.1016/j.jhazmat.2021.126482 [7] DUAN J J, BOLAN N, LI Y, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments[J]. Water Research, 2021, 196: 117011. doi: 10.1016/j.watres.2021.117011 [8] JIANG G N, ZHANG L, ZHU Y M, et al. Clinical consensus on preoperative pulmonary function assessment in patients undergoing pulmonary resection (first edition)[J]. Current Challenges in Thoracic Surgery, 2019, 1: 7. doi: 10.21037/ccts.2019.06.01 [9] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190 [10] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 2016, 50(20): 10777-10779. [11] FOSSI M C, PEDÀ C, COMPA M, et al. Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity[J]. Environmental Pollution, 2018, 237: 1023-1040. doi: 10.1016/j.envpol.2017.11.019 [12] GALL S C, THOMPSON R C. The impact of debris on marine life[J]. Marine Pollution Bulletin, 2015, 92(1/2): 170-179. [13] LIU P, ZHAN X, WU X W, et al. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks[J]. Chemosphere, 2020, 242: 125193. doi: 10.1016/j.chemosphere.2019.125193 [14] TER HALLE A, LADIRAT L, MARTIGNAC M, et al. To what extent are microplastics from the open ocean weathered?[J]. Environmental Pollution, 2017, 227: 167-174. doi: 10.1016/j.envpol.2017.04.051 [15] ZHOU L L, WANG T C, QU G Z, et al. Probing the aging processes and mechanisms of microplastic under simulated multiple actions generated by discharge plasma[J]. Journal of Hazardous Materials, 2020, 398: 122956. doi: 10.1016/j.jhazmat.2020.122956 [16] LUO H W, ZHAO Y Y, LI Y, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Science of the Total Environment, 2020, 714: 136862. doi: 10.1016/j.scitotenv.2020.136862 [17] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122 [18] LIU J, ZHANG T, TIAN L L, et al. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J]. Environmental Science & Technology, 2019, 53(10): 5805-5815. [19] LIU P, LU K, LI J L, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 2020, 384: 121193. doi: 10.1016/j.jhazmat.2019.121193 [20] LIU P, WU X W, LIU H Y, et al. Desorption of pharmaceuticals from pristine and aged polystyrene microplastics under simulated gastrointestinal conditions[J]. Journal of Hazardous Materials, 2020, 392: 122346. doi: 10.1016/j.jhazmat.2020.122346 [21] HUANG Y J, DING J N, ZHANG G S, et al. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging[J]. Science of the Total Environment, 2021, 752: 142256. doi: 10.1016/j.scitotenv.2020.142256 [22] JEONG C B, WON E J, KANG H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16): 8849-8857. [23] CAPOLUPO M, SØRENSEN L, JAYASENA K D R, et al. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms[J]. Water Research, 2020, 169: 115270. doi: 10.1016/j.watres.2019.115270 [24] COLE M, GALLOWAY T S. Ingestion of nanoplastics and microplastics by Pacific oyster larvae[J]. Environmental Science & Technology, 2015, 49(24): 14625-14632. [25] ATUGODA T, WIJESEKARA H, WERELLAGAMA D R I B, et al. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water[J]. Environmental Technology & Innovation, 2020, 19: 100971. [26] ELIZALDE-VELÁZQUEZ A, SUBBIAH S, ANDERSON T A, et al. Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics[J]. Science of the Total Environment, 2020, 715: 136974. doi: 10.1016/j.scitotenv.2020.136974 [27] GUO X, CHEN C, WANG J L. Sorption of sulfamethoxazole onto six types of microplastics[J]. Chemosphere, 2019, 228: 300-308. doi: 10.1016/j.chemosphere.2019.04.155 [28] LI H, WANG F H, LI J N, et al. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation[J]. Chemosphere, 2021, 264: 128556. doi: 10.1016/j.chemosphere.2020.128556 [29] QIU Y, ZHENG M G, WANG L, et al. Sorption of polyhalogenated carbazoles (PHCs) to microplastics[J]. Marine Pollution Bulletin, 2019, 146: 718-728. doi: 10.1016/j.marpolbul.2019.07.034 [30] WANG Q J, ZHANG Y, WANGJIN X X, et al. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation[J]. Journal of Environmental Sciences, 2020, 87: 272-280. doi: 10.1016/j.jes.2019.07.006 [31] SUN Y R, YUAN J H, ZHOU T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review[J]. Environmental Pollution, 2020, 265: 114864. doi: 10.1016/j.envpol.2020.114864 [32] KWON B G, KOIZUMI K, CHUNG S Y, et al. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution[J]. Journal of Hazardous Materials, 2015, 300: 359-367. doi: 10.1016/j.jhazmat.2015.07.039 [33] LUO H W, LI Y, ZHAO Y Y, et al. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics[J]. Environmental Pollution, 2020, 257: 113475. doi: 10.1016/j.envpol.2019.113475 [34] NAKASHIMA E, ISOBE A, KAKO S, et al. The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris[J]. Marine Pollution Bulletin, 2016, 107(1): 333-339. doi: 10.1016/j.marpolbul.2016.03.038 [35] LIU P, SHI Y Q, WU X W, et al. Review of the artificially-accelerated aging technology and ecological risk of microplastics[J]. Science of the Total Environment, 2021, 768: 144969. doi: 10.1016/j.scitotenv.2021.144969 [36] FAN X L, ZOU Y F, GENG N, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process[J]. Journal of Hazardous Materials, 2021, 401: 123363. doi: 10.1016/j.jhazmat.2020.123363 [37] CAI L Q, WANG J D, PENG J P, et al. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments[J]. Science of the Total Environment, 2018, 628/629: 740-747. doi: 10.1016/j.scitotenv.2018.02.079 [38] LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. doi: 10.1016/j.scitotenv.2020.137762 [39] ZHANG J H, CHEN H B, HE H, et al. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions[J]. Chemosphere, 2020, 245: 125628. doi: 10.1016/j.chemosphere.2019.125628 [40] LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. [41] LUO H W, ZENG Y F, ZHAO Y Y, et al. Effects of advanced oxidation processes on leachates and properties of microplastics[J]. Journal of Hazardous Materials, 2021, 413: 125342. doi: 10.1016/j.jhazmat.2021.125342 [42] MUNOZ M, ORTIZ D, NIETO-SANDOVAL J, et al. Adsorption of micropollutants onto realistic microplastics: Role of microplastic nature, size, age, and NOM fouling[J]. Chemosphere, 2021, 283: 131085. doi: 10.1016/j.chemosphere.2021.131085 [43] REN Z F, GUI X Y, WEI Y Q, et al. Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling[J]. Water Research, 2021, 202: 117407. doi: 10.1016/j.watres.2021.117407 [44] KONG F X, XU X, XUE Y G, et al. Investigation of the adsorption of sulfamethoxazole by degradable microplastics artificially aged by chemical oxidation[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(1): 155-165. doi: 10.1007/s00244-021-00856-w [45] WANG J C, WANG H. Fenton treatment for flotation separation of polyvinyl chloride from plastic mixtures[J]. Separation and Purification Technology, 2017, 187: 415-425. doi: 10.1016/j.seppur.2017.06.076 [46] ARP H P H, KÜHNEL D, RUMMEL C, et al. Weathering plastics as a planetary boundary threat: Exposure, fate, and hazards[J]. Environmental Science & Technology, 2021, 55(11): 7246-7255. [47] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100 [48] WANG H, QIU C, SONG Y L, et al. Adsorption of tetracycline and Cd(II) on polystyrene and polyethylene terephthalate microplastics with ultraviolet and hydrogen peroxide aging treatment[J]. Science of the Total Environment, 2022, 845: 157109. doi: 10.1016/j.scitotenv.2022.157109 [49] BRANDON J, GOLDSTEIN M, OHMAN M D. Long-term aging and degradation of microplastic particles: Comparing in situ oceanic and experimental weathering patterns[J]. Marine Pollution Bulletin, 2016, 110(1): 299-308. doi: 10.1016/j.marpolbul.2016.06.048 [50] VEERASINGAM S, SAHA M H, SUNEEL V, et al. Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India[J]. Chemosphere, 2016, 159: 496-505. doi: 10.1016/j.chemosphere.2016.06.056 [51] MENG J, XU B L, LIU F, et al. Effects of chemical and natural ageing on the release of potentially toxic metal additives in commercial PVC microplastics[J]. Chemosphere, 2021, 283: 131274. doi: 10.1016/j.chemosphere.2021.131274 [52] XU Y, WU Y, ZHANG W, et al. Performance of artificial sweetener sucralose mineralization via UV/O3 process: Kinetics, toxicity and intermediates[J]. Chemical Engineering Journal, 2018, 353: 626-634. doi: 10.1016/j.cej.2018.07.090 [53] ZHU K C, JIA H Z, SUN Y J, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species[J]. Water Research, 2020, 173: 115564. doi: 10.1016/j.watres.2020.115564 [54] LIN J L, YAN D Y, FU J W, et al. Ultraviolet-C and vacuum ultraviolet inducing surface degradation of microplastics[J]. Water Research, 2020, 186: 116360. doi: 10.1016/j.watres.2020.116360 [55] MIRANDA M N, SAMPAIO M J, TAVARES P B, et al. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors[J]. Science of the Total Environment, 2021, 796: 148914. doi: 10.1016/j.scitotenv.2021.148914 [56] GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13): 7252-7259. [57] WU X W, LIU P, HUANG H, et al. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations[J]. Science of the Total Environment, 2020, 717: 137033. doi: 10.1016/j.scitotenv.2020.137033 [58] WU X W, HUANG H, SHI Y Q, et al. Progress on the photo aging mechanism of microplastics and related impact factors in water environment[J]. Chinese Science Bulletin, 2021, 66(36): 4619-4632. doi: 10.1360/TB-2021-0376 [59] SINGH B, SHARMA N. Mechanistic implications of plastic degradation[J]. Polymer Degradation and Stability, 2008, 93(3): 561-584. doi: 10.1016/j.polymdegradstab.2007.11.008 [60] YOUSIF E, HADDAD R. Photodegradation and photostabilization of polymers, especially polystyrene: Review[J]. SpringerPlus, 2013, 2: 398. doi: 10.1186/2193-1801-2-398 [61] GUO X T, YIN Y Y, YANG C, et al. Maize straw decorated with sulfide for tylosin removal from the water[J]. Ecotoxicology and Environmental Safety, 2018, 152: 16-23. doi: 10.1016/j.ecoenv.2018.01.025 [62] HU J Q, YANG S Z, GUO L, et al. Microscopic investigation on the adsorption of lubrication oil on microplastics[J]. Journal of Molecular Liquids, 2017, 227: 351-355. doi: 10.1016/j.molliq.2016.12.043 [63] DEWIL R, MANTZAVINOS D, POULIOS I, et al. New perspectives for advanced oxidation processes[J]. Journal of Environmental Management, 2017, 195: 93-99. doi: 10.1016/j.jenvman.2017.04.010 [64] GIWA A, YUSUF A, BALOGUN H A, et al. Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review[J]. Process Safety and Environmental Protection, 2021, 146: 220-256. doi: 10.1016/j.psep.2020.08.015 [65] LI X W, MEI Q Q, CHEN L B, et al. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process[J]. Water Research, 2019, 157: 228-237. doi: 10.1016/j.watres.2019.03.069 [66] FARINELLI G, MINELLA M, PAZZI M, et al. Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments[J]. Journal of Hazardous Materials, 2020, 393: 122413. doi: 10.1016/j.jhazmat.2020.122413 [67] JIA H Z, ZHAO S, ZHU K C, et al. Activate persulfate for catalytic degradation of adsorbed anthracene on coking residues: Role of persistent free radicals[J]. Chemical Engineering Journal, 2018, 351: 631-640. doi: 10.1016/j.cej.2018.06.147 [68] DONG C C, JI J H, SHEN B, et al. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol[J]. Environmental Science & Technology, 2018, 52(19): 11297-11308. [69] GUAN R P, YUAN X Z, WU Z B, et al. Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: A review[J]. Chemical Engineering Journal, 2018, 339: 519-530. doi: 10.1016/j.cej.2018.01.153 [70] WU Z B, YUAN X Z, ZHONG H, et al. Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite[J]. Scientific Reports, 2016, 6: 25638. doi: 10.1038/srep25638 [71] XU X R, LI X Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion[J]. Separation and Purification Technology, 2010, 72(1): 105-111. doi: 10.1016/j.seppur.2010.01.012 [72] JIANG L B, YUAN X Z, LIANG J, et al. Nanostructured core-shell electrode materials for electrochemical capacitors[J]. Journal of Power Sources, 2016, 331: 408-425. doi: 10.1016/j.jpowsour.2016.09.054 [73] WANG H, YUAN X Z, WU Y, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Applied Catalysis B:Environmental, 2015, 174/175: 445-454. doi: 10.1016/j.apcatb.2015.03.037 [74] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151: 178-188. doi: 10.1016/j.chemosphere.2016.02.055 [75] MEI Q, SUN J F, HAN D N, et al. Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: Mechanisms, kinetics and toxicity assessment[J]. Chemical Engineering Journal, 2019, 373: 668-676. doi: 10.1016/j.cej.2019.05.095 [76] WANG W Q, CHEN M, WANG D B, et al. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates[J]. Science of the Total Environment, 2021, 772: 145522. doi: 10.1016/j.scitotenv.2021.145522 [77] GUO C X, WANG L L, LANG D N, et al. UV and chemical aging alter the adsorption behavior of microplastics for tetracycline[J]. Environmental Pollution, 2023, 318: 120859. doi: 10.1016/j.envpol.2022.120859 [78] GANIYU S O, ZHOU M H, MARTÍNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B:Environmental, 2018, 235: 103-129. doi: 10.1016/j.apcatb.2018.04.044 [79] ARSLAN-ALATON I, GURSES F. Photo-Fenton-like and photo-Fenton-like oxidation of Procaine Penicillin G formulation effluent[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 165(1/2/3): 165-175. [80] HÜFFER T, WENIGER A K, HOFMANN T. Sorption of organic compounds by aged polystyrene microplastic particles[J]. Environmental Pollution, 2018, 236: 218-225. doi: 10.1016/j.envpol.2018.01.022 [81] LIU X M, SUN P P, QU G J, et al. Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes[J]. Journal of Hazardous Materials, 2021, 407: 124836. doi: 10.1016/j.jhazmat.2020.124836 [82] ZOU W, XIA M L, JIANG K, et al. Photo-oxidative degradation mitigated the developmental toxicity of polyamide microplastics to zebrafish larvae by modulating macrophage-triggered proinflammatory responses and apoptosis[J]. Environmental Science & Technology, 2020, 54(21): 13888-13898. [83] 姬庆松, 孔祥程, 王信凯, 等. 环境微塑料与有机污染物的相互作用及联合毒性效应研究进展[J]. 环境化学, 2022, 41(1): 70-82. doi: 10.7524/j.issn.0254-6108.2020090303 JI Q S, KONG X C, WANG X K, et al. The interaction and combined toxic effects of microplastics and organic pollutants in the environment: A review[J]. Environmental Chemistry, 2022, 41(1): 70-82 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020090303
[84] SONG Y L, ZHAO J Q, ZHENG L, et al. Adsorption behaviors and mechanisms of humic acid on virgin and aging microplastics[J]. Journal of Molecular Liquids, 2022, 363: 119819. doi: 10.1016/j.molliq.2022.119819 [85] LIU X M, XU J, ZHAO Y P, et al. Hydrophobic sorption behaviors of 17β-estradiol on environmental microplastics[J]. Chemosphere, 2019, 226: 726-735. doi: 10.1016/j.chemosphere.2019.03.162 [86] VELZEBOER I, KWADIJK C J A F, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science & Technology, 2014, 48(9): 4869-4876. [87] WANG T, YU C C, CHU Q, et al. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films[J]. Chemosphere, 2020, 244: 125491. doi: 10.1016/j.chemosphere.2019.125491 [88] MO Q M, YANG X J, WANG J J, et al. Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects[J]. Environmental Pollution, 2021, 291: 118120. doi: 10.1016/j.envpol.2021.118120 [89] ANTUNES J C, FRIAS J G L, MICAELO A C, et al. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants[J]. Estuarine, Coastal and Shelf Science, 2013, 130: 62-69. doi: 10.1016/j.ecss.2013.06.016 [90] LIANG S J, XU S X, WANG C, et al. Enhanced alteration of poly(vinyl chloride) microplastics by hydrated electrons derived from indole-3-acetic acid assisted by a common cationic surfactant[J]. Water Research, 2021, 191: 116797. doi: 10.1016/j.watres.2020.116797 [91] WANG C, LIANG S J, BAI L H, et al. Structure-dependent surface catalytic degradation of cephalosporin antibiotics on the aged polyvinyl chloride microplastics[J]. Water Research, 2021, 206: 117732. doi: 10.1016/j.watres.2021.117732 [92] FU L N, LI J, WANG G Y, et al. Adsorption behavior of organic pollutants on microplastics[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112207. doi: 10.1016/j.ecoenv.2021.112207 [93] ÁLVAREZ-TORRELLAS S, MUNOZ M, GLÄSEL J, et al. Highly efficient removal of pharmaceuticals from water by well-defined carbide-derived carbons[J]. Chemical Engineering Journal, 2018, 347: 595-606. doi: 10.1016/j.cej.2018.04.127 [94] GHAFFAR A, GHOSH S, LI F F, et al. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates[J]. Environmental Pollution, 2015, 206: 502-509. doi: 10.1016/j.envpol.2015.08.001 [95] HÜFFER T, HOFMANN T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environmental Pollution, 2016, 214: 194-201. doi: 10.1016/j.envpol.2016.04.018 [96] MAILHOT B, GARDETTE J L. Polystyrene photooxidation. 2. A pseudo wavelength effect[J]. Macromolecules, 1992, 25(16): 4127-4133. doi: 10.1021/ma00042a013 [97] GUO X, WANG J L. The chemical behaviors of microplastics in marine environment: A review[J]. Marine Pollution Bulletin, 2019, 142: 1-14. doi: 10.1016/j.marpolbul.2019.03.019