-
自20世纪40年代以来,大量塑料制品及其塑料废弃物进入自然或人工环境中[1 − 2],在光照、高温以及物理磨损、化学腐蚀和生物降解作用下发生破损、裂解等[3 − 5],形成粒径小于5 mm的纤维、颗粒、薄膜和碎片状的微塑料(microplastics,MPs)[2 − 3]. 近年来,海洋、湖泊、河流、土壤等生态系统中已检出种类丰富、数量巨大的MPs,地球南北极以及最深和最高的地方都检测到MPs的存在[6 − 9],反映出MPs污染已遍布全球. 经预测到2030年全球范围内MPs数量将达到5.3×107 t [10]. 这些数量庞大的MPs将对生态系统以及人类健康构成严重威胁[11 − 12]. 表现在:一方面MPs可吸附积累重金属[13]、农药[14]、内分泌干扰素[15]、抗生素等污染物[16],在产生复合毒性效应[16]的同时,可能将吸附的这些有害物质输送到任何没有被污染的生态系统[17];另一方面,附着于MPs载体上的非本地物种可随MPs在水体中长距离漂移后到达新的栖息地[4, 18],这可能加剧病毒等聚集、扩散和传播风险[19]. 作为全世界范围内不容忽视的新型污染物,MPs污染问题已被广泛关注[20 − 21].
与水体中漂浮的自然基质相比[22],MPs尺寸小、具有较大的比表面积,材质疏水性强,其难降解的特性使MPs可在水体中更长时间的存在,这些特征为微生物附着提供了理性的载体和独特的环境[23]. 近年来,关于MPs附着微生物的研究主要集中在聚合物材质、暴露时间等方面,且研究结果存在较大差异. 如Zettler等[24]认为MPs类型对微生物定殖有显著影响,该研究发现PE-MPs和PS-MPs附着微生物群落相似度仅为58%;但Di Pippo等[25]发现MPs类型对附着微生物群落的组成、结构和丰度没有显著影响. 由于MPs附着细菌主要来源于其所在水域水体等环境介质 [26 − 27],环境背景差异对附着细菌群落产生重要影响[28 − 29]. 如文开等[19]发现变形杆菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)是暴露于污染海水中的PS-MPs附着最主要的优势菌门,而Ogonowski等[30]则发现,除了变形杆菌门和拟杆菌门,浮霉菌门(Planctomycetes)也是波罗的海PS-MPs附着的核心细菌门. 可见,不同水域的MPs附着细菌群落差异较大. 尽管针对湖泊生态系统已有关于MPs附着微生物的研究报告[9, 20 − 22],但现有研究主要集中在不同暴露时间的MPs附着微生物群落多样性等方面,MPs附着微生物与所在水域环境介质中微生物群落及其功能的对比性研究仍不足. 基于此,本实验以淡水水域频繁检出的PE、PVC、PP、PS和PET共5种材质MPs为附着载体,开展为期42 d原位暴露实验,对比分析同一生境下MPs附着细菌与其所在水域环境样品(沉积物以及上覆水)细菌在群落及其功能上的差异,研究结果对于进一步积累淡水水域MPs附着细菌群落及其功能特征方面的基础数据具有重要的意义.
微塑料短期暴露后附着细菌与所在水域环境样本细菌群落及功能差异
Difference in community structure and function of bacteria attached to microplastics surface after short-term exposure compared to bacteria in the overlying water and sediment
-
摘要: 作为新兴环境污染物,微塑料已成为全球广泛关注的热点环境问题. 然而,微塑料附着微生物与所在水域环境介质中微生物群落及其功能的对比性研究仍不足. 基于此,以我国淡水湖泊高频检出的聚乙烯(PE)、聚氯乙烯(PVC)、聚丙烯(PP)、聚苯乙烯(PS)和聚对苯二甲酸乙二醇酯(PET)微塑料为研究对象,将其于湖泊水体短期暴露42 d后,对比分析微塑料附着细菌与所在水域环境样本(上覆水和沉积物)细菌群落及功能的差异. 结果表明,微塑料与所在水域上覆水和沉积物3种来源样本共检测操作分类单元(OTUs)
5142 个,包含细菌60门164纲377目598科1081 属2088 种;沉积物以及微塑料附着细菌群落丰富度和物种多样性均显著高于上覆水中浮游细菌(P<0.05);基于层级聚类以及非度量多维尺度分析(NMDS),发现微塑料、沉积物以及上覆水浮游细菌各自形成独特的群落结构. 10.44%的细菌同时存在于上覆水、沉积物以及微塑料,而微塑料、上覆水以及沉积物中分别检测到40.95%、1.89%和10.63%的独有OTUs. 从门、纲、属分类水平上均发现,微塑料在湖泊中短期暴露将对细菌群落中占比较小的物种产生更显著的影响. PICRUSt2功能预测发现5个KEGG一级代谢通路以及33个二级代谢通路相对丰度在微塑料、上覆水以及沉积物样本间存在显著差异(P<0.05);基于FAPROTAX的生态功能预测结果,发现共有35个功能类群在3种来源样本中存在显著差异(P<0.05),这些差异性的功能类群涉及到碳、氮和硫的生物化学循环;相对于环境样本,微塑料附着细菌具有更高的硝酸盐还原、氮呼吸和硝酸呼吸功能;而沉积物具有更高的固氮作用、亚硝酸盐脱氮、氧化亚氮脱氮、硝酸盐反硝化以及反硝化作用. 以上结果证实了微塑料的存在对所在水域细菌群落结构和功能均产生影响. 微塑料附着细菌与附着物理化参数间存在一定的相关性. 本文所选5种微塑料材质差异对附着细菌群落及其功能无显著影响. 上述结果为进一步理解微塑料在水体中暴露后在其表面富集的微生物与所在环境微生物的差异提供了数据支持.Abstract: Microplastics, an emerging environmental pollutant, has emerged as a hot environmental issue and has been widely concerned around the world. However, the difference in community structure and function between bacteria attached to microplastics surface and bacteria in the overlying water and sediment is still lacking. Hence, the microplastic particles of polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) detected by high frequency in freshwater lakes in China were taken as the research objects and placed in the lake for short-term exposure for 42 days. The differences of bacterial communities and functions between the bacteria attached to the surface of microplastics and the water samples (overlying water and sediment) were compared and analyzed. The results showed that a total of5142 OTUs were detected in the microplastics samples, the overlying water samples, and the sediment samples. These OTUs include 60 phyla, 164 classes, 377 orders, 598 families, and1081 genera. The community richness and species diversity of bacteria attached to the surface of sediments and microplastics were significantly higher than that of plankton bacteria in overlying water (P<0.05). Complex and unique community structures were observed in microplastic surface, sediment and overlying water, respectively, based on hierarchical clustering and non-metric multidimensional scaling analysis (NMDS). 10.44% of common OTUs were detected both from on the surface of microplastics, the overlying water, sediment and microplastics, while 40.95%, 1.89% and 10.63% of unique OTUs were just detected from microplastics, overlying water and sediment samples, respectively. In terms of phyla, class and genus classification, it was found that microplastics surface after short-term exposure in lakes would have a more significant impact on species with low relative abundance. PICRUSt2 function prediction showed that the relative abundance of 6 primary metabolic pathways and 33 secondary metabolic pathways of KEGG were significantly different in microplastics, overlying water and sediment samples (P<0.05). The ecological function prediction results based on FAPROTAX shown that total 35 functional groups have significant differences in microplastics, overlying water and sediment samples (P<0.05), and these functional groups involved the biochemical cycles of carbon, nitrogen and sulfur. Compared with the environmental samples, the bacteria attached to the surface of microplastics had higher nitrate reduction, nitrogen respiration and nitric acid respiration functions. The sediment has higher nitrogen fixation, nitrite removal, nitrous oxide removal, nitrate denitrification and denitrification. The above results confirmed that the presence of microplastics had an effect on the structure and function of bacterial communities in the water. Bacteria were significantly affected by the physical and chemical parameters of the biofilm attached to the surface of microplastics, however, were not affected by microplastic types These results provide data support for further understanding of the impact of microplastics on freshwater ecosystems.-
Key words:
- microplastics /
- bacterial communities /
- function prediction /
- sediment /
- overlying water.
-
表 1 细菌群落KEGG代谢通路(Level 1)相对丰度
Table 1. Relative abundance of KEGG metabolic pathway (Level 1) in bacterial communities
分组
Groups新陈代谢
Metabolism遗传信息处理
Genetic
information
processing遗传信息处理
Environmental
information
processing细胞过程
Cellular processes人类疾病
Human diseases有机系统
Organismal
systems3组样本 MPs 76.53%±0.43% 6.39%±0.18% 6.00%±0.31% 4.87%±0.18% 4.28%±0.31% 1.92%±0.05% Sediment 77.37%±0.12% 7.42%±0.03% 5.38%±0.08% 4.67%±0.07% 3.30%±0.10% 1.86%±0.01% Water 77.58%±0.63% 6.75%±0.30% 5.25%±0.10% 4.11%±0.12% 4.38%±0.58% 1.98%±0.09% P值 <0.05 <0.05 <0.05 <0.05 <0.05 >0.05 5个材质 PP-MPs 76.93%±0.32% 6.51%±0.08% 5.80%±0.26% 4.76%±0.04% 4.12%±0.42% 1.89%±0.06% PE-MPs 76.64%±0.33% 6.40%±0.04% 5.93%±0.14% 4.89%±0.12% 4.17%±0.32% 1.97%±0.02% PVC-MPs 76.04%±0.04% 6.13%±0.11% 6.28%±0.08% 5.02%±0.11% 4.64%±0.07% 1.90%±0.02% PET-MPs 76.26%±0.47% 6.33%±0.02% 6.22%±0.43% 4.99%±0.23% 4.29%±0.27% 1.91%±0.04% PS-MPs 76.80%±0.09% 6.57%±0.14% 5.79%±0.25% 4.68%±0.10% 4.20%±0.20% 1.95%±0.06% P值 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 -
[1] YANG L, ZHANG Y L, KANG S C, et al. Microplastics in soil: A review on methods, occurrence, sources, and potential risk[J]. Science of the Total Environment, 2021, 780: 146546. doi: 10.1016/j.scitotenv.2021.146546 [2] 黄艺, 贾薇茜, 李康, 等. 土壤微塑料与微生物的相互作用关系[J]. 环境科学学报, 2022, 42(4): 64-74. HUANG Y, JIA W Q, LI K, et al. Interaction between soil microplastics and microorganisms[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 64-74 (in Chinese).
[3] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [4] 文晓凤, 尹令实, 蒋昌波, 等. 典型城市湖泊岳阳南湖表层水体中的微塑料污染特征[J]. 环境化学, 2022, 41(11): 3579-3588. doi: 10.7524/j.issn.0254-6108.2021071404 WEN X F, YIN L S, JIANG C B, et al. Microplastics in surface water of a typical urban lake: A case study from Nanhu Lake, Yueyang City[J]. Environmental Chemistry, 2022, 41(11): 3579-3588 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021071404
[5] 韦婧, 涂晨, 杨杰, 等. 微塑料对农田土壤理化性质、土壤微生物群落结构与功能的影响[J]. 生态与农村环境学报, 2023, 39(5): 644-652. WEI J, TU C, YANG J, et al. Impact of microplastics on the physicochemical properties, microbial community structure, and functions of farmland soils[J]. Journal of Ecology and Rural Environment, 2023, 39(5): 644-652 (in Chinese).
[6] NAPPER I E, DAVIES B F R, CLIFFORD H, et al. Reaching new heights in plastic pollution—Preliminary findings of microplastics on mount Everest[J]. One Earth, 2020, 3(5): 621-630. doi: 10.1016/j.oneear.2020.10.020 [7] 周雨柔, 姚娜, 胡超, 等. 亚热带浅水型内湖水体与沉积物微塑料分布特征及来源: 以大明湖为例[J]. 环境化学, 2025, 44(3), DOI:10.7524/j.issn.0254-6108.2023100702. ZHOU Y R, YAO N, HU C, et al. Distribution characteristics and sources of microplastics in water and sediment of subtropical shallow inner lake: A case study of Daming Lake[J]. Environmental Chemistry, 2025, 44(3), DOI:10.7524/j.issn.0254-6108.2023100702(in Chinese).
[8] JAMIESON A J, BROOKS L S R, REID W D K, et al. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth[J]. Royal Society Open Science, 2019, 6(2): 180667. doi: 10.1098/rsos.180667 [9] 耿凤. 微塑料在全球水体及沉积物中的分布及污染特征[D]. 哈尔滨: 哈尔滨工业大学, 2020. GENG F. Distribution and Characteristics of Microplastics in Global Water and Sediments[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
[10] BORRELLE S B, RINGMA J, LAW K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020, 369(6510): 1515-1518. doi: 10.1126/science.aba3656 [11] LESLIE H A, van VELZEN M J M, BRANDSMA S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163: 107199. doi: 10.1016/j.envint.2022.107199 [12] JENNER L C, ROTCHELL J M, BENNETT R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831: 154907. doi: 10.1016/j.scitotenv.2022.154907 [13] 付东东, 张琼洁, 范正权, 等. 微米级聚苯乙烯对铜的吸附特性[J]. 中国环境科学, 2019, 39(11): 4769-4775. doi: 10.3969/j.issn.1000-6923.2019.11.036 FU D D, ZHANG Q J, FAN Z Q, et al. Adsorption characteristics of copper ions on polystyrene microplastics[J]. China Environmental Science, 2019, 39(11): 4769-4775 (in Chinese). doi: 10.3969/j.issn.1000-6923.2019.11.036
[14] AHMAD M, LI J L, WANG P D, et al. Environmental perspectives of microplastic pollution in the aquatic environment: A review[J]. Marine Life Science & Technology, 2020, 2(4): 414-430. [15] BAKIR A, ROWLAND S J, THOMPSON R C. Transport of persistent organic pollutants by microplastics in estuarine conditions[J]. Estuarine, Coastal and Shelf Science, 2014, 140: 14-21. doi: 10.1016/j.ecss.2014.01.004 [16] 韩冰, 李华南, 王梓静, 等. 微塑料和多种抗生素胁迫下土壤环境因子的响应特性[J]. 环境化学, 2024, 43(2): 506-514. doi: 10.7524/j.issn.0254-6108.2022072101 HAN B, LI H N, WANG Z J, et al. Response characteristics of soil environmental factors under the stress of microplastics and antibiotics[J]. Environmental Chemistry, 2024, 43(2): 506-514 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022072101
[17] 李道季, 董旭日. 海洋环境中的微塑料及其附着生物研究进展[J]. 华东师范大学学报(自然科学版), 2022(3): 1-7. LI D J, DONG X R. Research progress of microplastics and attached organisms in marine environment[J]. Journal of East China Normal University (Natural Science), 2022(3): 1-7 (in Chinese).
[18] GREGORY M R. Environmental implications of plastic debris in marine settings: Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2009, 364(1526): 2013-2025. doi: 10.1098/rstb.2008.0265 [19] 文开, 柳金涛, 王欢, 等. 微塑料污染对海水微生物群落特征的影响[J]. 环境科学与技术, 2022, 45(5): 60-69. WEN K, LIU J T, WANG H, et al. Effects of microplastics pollution on seawater microbial flora[J]. Environmental Science & Technology, 2022, 45(5): 60-69 (in Chinese).
[20] 刘淑丽, 胡启武, 杨慧林, 等. 鄱阳湖南矶山湿地微塑料表面微生物分布特征[J]. 环境科学学报, 2022, 42(6): 206-214. LIU S L, HU Q W, YANG H L, et al. Distribution characteristics of microorganisms on microplastic surface in Nanjishan wetland of Poyang Lake[J]. Acta Scientiae Circumstantiae, 2022, 42(6): 206-214 (in Chinese).
[21] 骆永明, 施华宏, 涂晨, 等. 环境中微塑料研究进展与展望[J]. 科学通报, 2021, 66(13): 1547-1562. doi: 10.1360/TB-2020-0979 LUO Y M, SHI H H, TU C, et al. Research progresses and prospects of microplastics in the environment[J]. Chinese Science Bulletin, 2021, 66(13): 1547-1562 (in Chinese). doi: 10.1360/TB-2020-0979
[22] 郭佳宝, 黄艺. 水体微塑料表面生物膜特征及影响因素[J]. 环境科学与技术, 2023, 46(6): 221-227. GUOJIA B, HUANG Y. Characteristics and influencing factors of biofilm on the surface of water microplastics[J]. Environmental Science & Technology, 2023, 46(6): 221-227 (in Chinese).
[23] WU X J, PAN J, LI M, et al. Selective enrichment of bacterial pathogens by microplastic biofilm[J]. Water Research, 2019, 165: 114979. doi: 10.1016/j.watres.2019.114979 [24] ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A. Life in the “plastisphere” : Microbial communities on plastic marine debris[J]. Environmental Science & Technology, 2013, 47(13): 7137-7146. [25] Di PIPPO F, VENEZIA C, SIGHICELLI M, et al. Microplastic-associated biofilms in lentic Italian ecosystems[J]. Water Research, 2020, 187: 116429. doi: 10.1016/j.watres.2020.116429 [26] SUN X M, CHEN B J, XIA B, et al. Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: A case in situ study on the Sungo Bay, China[J]. Environmental Pollution, 2020, 262: 114336. doi: 10.1016/j.envpol.2020.114336 [27] 章宇晴, 李大圳, 付茜茜, 等. 水环境中微塑料表面细菌群落特征研究进展[J]. 生态毒理学报, 2022, 17(1): 116-128. ZHANG Y Q, LI D Z, FU Q Q, et al. Review on bacterial community characteristics on microplastics surfaces in aquatic environment[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 116-128 (in Chinese).
[28] MIAO L Z, YU Y, ADYEL T M, et al. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems[J]. Journal of Hazardous Materials, 2021, 403: 123577. doi: 10.1016/j.jhazmat.2020.123577 [29] CHEN X C, XIONG X, JIANG X M, et al. Sinking of floating plastic debris caused by biofilm development in a freshwater lake[J]. Chemosphere, 2019, 222: 856-864. doi: 10.1016/j.chemosphere.2019.02.015 [30] OGONOWSKI M, MOTIEI A, ININBERGS K, et al. Evidence for selective bacterial community structuring on microplastics[J]. Environmental Microbiology, 2018, 20(8): 2796-2808. doi: 10.1111/1462-2920.14120 [31] YU W C, LI J H, MA X W, et al. Community structure and function of epiphytic bacteria attached to three submerged macrophytes[J]. Science of the Total Environment, 2022, 835: 155546. doi: 10.1016/j.scitotenv.2022.155546 [32] 李汶璐, 王志超, 杨文焕, 等. 微塑料对沉积物细菌群落组成和多样性的影响[J]. 环境科学, 2022, 43(5): 2606-2613. LI W L, WANG Z C, YANG W H, et al. Effects of microplastics on bacterial community composition and diversity in sediments[J]. Environmental Science, 2022, 43(5): 2606-2613 (in Chinese).
[33] GUO S Z, ZHANG S H, WANG S P, et al. Potamogeton crispus restoration increased the epiphytic microbial diversity and improved water quality in a micro-polluted urban river[J]. Environmental Pollution, 2023, 326: 121485. doi: 10.1016/j.envpol.2023.121485 [34] LI Q, HU Y P, KOU D H, et al. Factors impacting microplastic biofilm community and biological risks posed by microplastics in drinking water sources[J]. Water, Air, & Soil Pollution, 2022, 233(6): 179. [35] PERKINS T L, CLEMENTS K, BAAS J H, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. PLoS One, 2014, 9(11): e112951. doi: 10.1371/journal.pone.0112951 [36] SUN Y, LI X, LIU J J, et al. Comparative analysis of bacterial community compositions between sediment and water in different types of wetlands of Northeast China[J]. Journal of Soils and Sediments, 2019, 19(7): 3083-3097. doi: 10.1007/s11368-019-02301-x [37] 彭柯, 董志, 邸琰茗, 等. 基于16S rRNA高通量测序的北运河水体及沉积物微生物群落组成对比分析[J]. 环境科学, 2021, 42(11): 5424-5432. PENG K, DONG Z, DI Y M, et al. Contrasting analysis of microbial community composition in the water and sediments of the north canal based on 16S rRNA high-throughput sequencing[J]. Environmental Science, 2021, 42(11): 5424-5432 (in Chinese).
[38] 陈玉芳, 闫振华, 张燕, 等. 城市水体微塑料垂向分布下附着细菌群落结构和功能响应[J]. 环境科学, 2022, 43(6): 3088-3096. CHEN Y F, YAN Z H, ZHANG Y, et al. Community structure and microbial function responses of biofilms colonizing on microplastics with vertical distribution in urban water[J]. Environmental Science, 2022, 43(6): 3088-3096 (in Chinese).
[39] JIANG P L, ZHAO S Y, ZHU L X, et al. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary[J]. Science of the Total Environment, 2018, 624: 48-54. doi: 10.1016/j.scitotenv.2017.12.105 [40] 付茜茜, 李大圳, 章宇晴, 等. 城市红树林系统中微塑料表面细菌群落结构特征分析[J]. 热带作物学报, 2021, 42(12): 3692-3698. doi: 10.3969/j.issn.1000-2561.2021.12.041 FU Q Q, LI D Z, ZHANG Y Q, et al. Microbial colonization and communities on microplastics in urban mangrove system[J]. Chinese Journal of Tropical Crops, 2021, 42(12): 3692-3698 (in Chinese). doi: 10.3969/j.issn.1000-2561.2021.12.041
[41] CAI L, WU D, XIA J H, et al. Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics[J]. Science of the Total Environment, 2019, 671: 1101-1107. doi: 10.1016/j.scitotenv.2019.03.434 [42] 董旭日, 朱礼鑫, 徐佳奕, 等. 微塑料附着微生物研究进展[J]. 微生物学杂志, 2022, 42(2): 81-87. doi: 10.3969/j.issn.1005-7021.2022.02.011 DONG X R, ZHU L X, XU J Y, et al. Advances in microorganism attached to microplastics[J]. Journal of Microbiology, 2022, 42(2): 81-87 (in Chinese). doi: 10.3969/j.issn.1005-7021.2022.02.011
[43] 李文杰. 渤海湾海河河口不同塑料碎片表面的细菌群落特征及其环境影响因素的研究[D]. 天津: 天津大学, 2019. LI W J. Bacterial Communities on Plastic Debris, Influenced by Environmental Factors and Polymer Types in the Haihe Estuary of Bohai Bay, China[D]. Tianjin: Tianjin University, 2019 (in Chinese).
[44] BHAGWAT G, ZHU Q Y, O’CONNOR W, et al. Exploring the composition and functions of plastic microbiome using whole-genome sequencing[J]. Environmental Science & Technology, 2021, 55(8): 4899-4913. [45] SEELEY M E, SONG B, PASSIE R, et al. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11: 2372. doi: 10.1038/s41467-020-16235-3 [46] DAI H H, GAO J F, WANG Z Q, et al. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system[J]. Journal of Cleaner Production, 2020, 256: 120402. doi: 10.1016/j.jclepro.2020.120402 [47] LI R L, YU L Y, CHAI M W, et al. The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China[J]. Science of the Total Environment, 2020, 708: 135025. doi: 10.1016/j.scitotenv.2019.135025 [48] YANG Y Y, LIU W Z, ZHANG Z L, et al. Microplastics provide new microbial niches in aquatic environments[J]. Applied Microbiology and Biotechnology, 2020, 104(15): 6501-6511. doi: 10.1007/s00253-020-10704-x [49] 刘淑丽, 简敏菲, 邹龙, 等. 鄱阳湖白鹤保护区微塑料表面微生物群落结构特征[J]. 环境科学, 2022, 43(3): 1447-1454. LIU S L, JIAN M F, ZOU L, et al. Microbial community structure on microplastic surface in the Grus leucogeranus reserve of Poyang Lake[J]. Environmental Science, 2022, 43(3): 1447-1454 (in Chinese).
[50] LYONS B P, COWIE W J, MAES T, et al. Marine plastic litter in the ROPME Sea Area: Current knowledge and recommendations[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109839. doi: 10.1016/j.ecoenv.2019.109839 [51] CHEN X C, CHEN X F, ZHAO Y H, et al. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems[J]. Science of the Total Environment, 2020, 719: 137276. doi: 10.1016/j.scitotenv.2020.137276 [52] 李大圳, 章宇晴, 付茜茜, 等. 红树林退化对微塑料表面细菌群落特征的影响[J]. 农业环境科学学报, 2023, 42(2): 299-309. doi: 10.11654/jaes.2022-0690 LI D Z, ZHANG Y Q, FU Q Q, et al. Effects of mangrove degradation on the characteristics of bacterial communities colonizing microplastics[J]. Journal of Agro-Environment Science, 2023, 42(2): 299-309 (in Chinese). doi: 10.11654/jaes.2022-0690
[53] 杨雪琴, 连英丽, 颜庆云, 等. 滨海湿地生态系统微生物驱动的氮循环研究进展[J]. 微生物学报, 2018, 58(4): 633-648. YANG X Q, LIAN Y L, YAN Q Y, et al. Microbially-driven nitrogen cycling in coastal ecosystems[J]. Acta Microbiologica Sinica, 2018, 58(4): 633-648 (in Chinese).