-
全氟烷基化合物(Perfluoroalkyl substances, PFASs)是一类由碳原子和氟原子组成的有机化合物[1]. C—F键相较于C—H键具有更高的键能,因此PFASs具有很强的化学稳定性和热稳定性,如果释放到环境中,可以长时间存在于环境介质中. PFASs广泛应用于日常消费品中,如防污和防水织物、地毯、不粘炊具、表面活性剂,杀虫剂,食品接触材料以及消防泡沫等[2]. PFASs按照官能团可以分为全氟烷基磺酸类(perfluoroalkyl sulfonates, PFSAs)、全氟烷基羧酸类(perfluoroalkyl carboxylates, PFCAs)、全氟烷基磷酸类(perfluorophosphonates, PFPAs)和全氟调聚醇(fluorotelomer alcohol, FTOH)等.
PFASs应用广泛,已经在世界范围内的各种环境介质中检出,并且可以通过食物链在动物和人体内富集,严重威胁人体健康和生态系统稳定. 人类接触PFASs主要通过饮食、饮用水、吸入空气、皮肤接触等途径[3]. PFASs广泛存在于各种食品中,如蔬菜、乳制品、饮料、蛋类、肉制品、鱼类和贝类等[4-5]. 食用鱼类和贝类是PFASs主要的暴露途径. 一些研究[6 − 8]表明,食用鱼类和海洋哺乳动物与人体血液中PFASs水平升高有关. 丹麦的一项研究[9]显示,血清中PFASs浓度与哺乳动物的肉(猪肉、牛肉、羊肉等)、动物脂肪的消费量呈正相关,但与鱼类消费量无相关性. 饮用水是人类接触PFASs的另一个重要途径,不同类型的饮用水中,自来水的PFASs水平高于生水(未经消毒过滤,如河水、溪水等)和瓶装水[10-11]. PFASs分布广泛,难以降解,在人体组织内具有生物放大作用,不仅会对人体自身产生危害,还会通过胎盘和乳汁从母体转移到后代[12]. 妊娠期是产前污染物暴露的重要窗口,胎儿在生长发育的最初期,对宫内环境极为敏感,极低剂量的暴露都可能会对胎儿生长发育产生不利影响,如低出生体重[13],肛门生殖器距离缩短[14]等,严重者可能会对长期的生长发育造成不利影响,如儿童自闭症[15],认知障碍[16]等. 本文通过对母婴人群PFASs暴露和相关流行病学研究结果进行综述,阐述环境PFASs暴露对母婴人群的健康影响. 几种常见的PFASs英文名及缩写如表1所示.
孕期全氟烷基化合物暴露对胎儿生长发育影响的研究进展
Research progress of perfluoroalkyl substances exposure during pregnancy and its effects on fetal growth
-
摘要: 全氟烷基化合物(Perfluoroalkyl substances,PFASs)作为一种新型的有机污染物,可在环境中长期存在. 孕期由于胎儿尚处在发育阶段,对环境污染物等风险因素格外敏感. 大量流行病学研究在孕妇乳汁、血液、尿液中检测到PFASs存在,提示胎儿有暴露于PFASs的风险,并可能导致胎儿不良出生结局. 本文综述了国内外关于PFASs在母婴人群中的暴露现状及其对母体及胎儿影响的研究进展,指出目前研究的发展趋势,以期为今后的研究提供参考.Abstract: Perfluoroalkyl substances(PFASs)are emerging organic pollutant that can persist in the environment. Due to the development stage, the fetus is particularly sensitive to environmental pollutants and other risk factors during pregnancy. Numerous epidemiological studies have detected the presence of PFASs in the milk, blood, and urine of pregnant women, suggesting a risk of fetal exposure to PFASs, which may lead to adverse fetal birth outcomes. In this paper, we reviewed the progress of latest studies on PFASs exposure and its biological effects on mothers and fetuses, summarized the current research trends and provide references for future studies.
-
Key words:
- perfluoroalkyl substances /
- fetus /
- exposure /
- health effects
-
表 1 全氟烷基化合物中英文全称及英文缩写
Table 1. Perfluoroalkyl substances in English and Chinese and English abbreviations
中文名
Chinese Name英文名
English Name缩写
Abbreviations全氟戊酸 perfluoropentanoate PFPeA 全氟己酸 perfluorohexanoate PFHxA 全氟庚酸 perfluoroheptanoate PFHpA 全氟辛酸 perfluorooctanoate PFOA 全氟壬酸 perfluorononanoate PFNA 全氟癸酸 perfluorodecanoate PFDA 全氟十一烷酸 Perfluoroundecanoic acid PFUnDA 全氟十二烷酸 Perfluorododecanoic acid PFDoA 全氟十三烷酸 Perfluorotridecanoic acid PFTrDA 全氟丁烷磺酸 perfluorobutane sulfonate PFBS 全氟己烷磺酸 perfluorohexane sulfonate PFHxS 全氟庚烷磺酸 perfluoroheptane sulphonate PFHpS 全氟辛烷磺酸 perfluorooctane sulfonate PFOS 全氟己基乙醇
全氟辛基乙醇perfluorohexyl ethanol
perfluoroctyl ethanol6:2 FTOH
8:2 FTOH表 2 国内外妊娠期妇女PFASs暴露水平相关研究
Table 2. Studies related to the exposure levels of PFASs in women during pregnancy in China and abroad
来源
Source国家和地区
Country and district孕期
Pregnancy样本量
NumberPFASs种类
PFASs categories单位
UnitPFOS PFOA PFHxS PFNA Chang等[20] 美国(2014—2018) 妊娠早期 453 2.03 0.63 0.99 0.24 ng·mL−1;GM Oh等[21] 美国(2009—2015) 妊娠早中晚 173 3.00 0.90 0.40 0.50 ng·mL−1;中位浓度 Starling等[22] 美国(2009—2014) 妊娠中期 628 2.30 1.04 0.75 0.39 ng·mL−1;GM Souza等[23] 巴西(2010—2011) 妊娠中期 1400 3.41 0.2 0.95 0.12 ng·mL−1;中位浓度 Marks等[13] 英国(1991—1992) 妊娠晚期 457 13.80 3.00 1.90 0.40 ng·mL−1;中位浓度 Donley等[24] 英国(1991—1992) 妊娠早期 448 19.80 3.70 1.60 0.50 ng·mL−1;中位浓度 Brantsæter等[25] 挪威(2003—2004) 妊娠中期 487 12.80 2.11 0.60 0.39 ng·mL−1;中位浓度 Costa等[26] 西班牙(2003—2008) 妊娠早期 1230 6.05 2.35 0.58 0.65 ng·mL−1;中位浓度 Kashino 等[28] 日本(2003—2009) 妊娠晚期 1985 3.40 2.00 0.30 1.20 ng·mL−1;中位浓度 Ashley-Martin等[29] 加拿大(2008—2011) 妊娠早期 1723 4.60 1.70 1.00 ng·mL−1;中位浓度 Liu等[17] 中国天津(2010—2012) 妊娠早中期 480 7.05 2.82 0.45 0.82 ng·mL−1;GM 谢珍珍等[2] 中国上海(2012) 妊娠早中期 646 10.67 19.76 2.74 1.76 μg·L−1;中位浓度 Yang等[18] 中国河北(2013—2014) 妊娠早期 557 6.69 5.37 0.32 1.24 ng·mL−1;中位浓度 牛金波等[1] 中国浙江(2016—2018) 妊娠早中期 942 8.71 11.99 5.44 2.36 μg·L−1;中位浓度 Liao等 [19] 中国广西(2015—2019) 妊娠早期 821 1.13 2.31 0.11 0.62 ng·mL−1;中位浓度 注:GM= geometric mean. 表 3 国内外妊娠期妇女PFASs暴露对胎儿发育影响的流行病学研究
Table 3. Epidemiological studies on the effects of exposure to PFASs on fetal growth in women during pregnancy in China and abroad
来源
Source国家和地区
Country and district孕期
Pregnancy样本量
Number结局
OutcomesMarks等[13] 英国(1991—1992) 妊娠晚期 457 妊娠期PFOS暴露与出生体重、出生身长和头围之间负相关 Xiao等[43] 法罗群岛(1994—1995) 妊娠晚期 172 妊娠期PFHxS暴露与出生体重、出生身长、头围负相关,
PFOS与出生体重、出生身长负相关Starling等[22] 美国(2009—2014) 妊娠中期 628 妊娠期PFOA、PFNA暴露与出生体重呈负相关 Zheng等[30] 中国(2018) 妊娠晚期 60 妊娠期PFDA、PFUnDA、PFTrDA、PFOS和6∶2 Cl-PFESA
暴露与出生体重呈正相关Costa等[26] 西班牙(2003—2008) 妊娠早期 1230 妊娠期PFASs暴露与胎儿生长之间无关 Manzano-Salgado等[51] 西班牙(2003—2008) 妊娠早期 1202 妊娠期PFASs暴露与出生体重、身长,头围无关 Kashino等[28] 日本(2003—2009) 妊娠晚期 1985 妊娠期PFNA和PFDA暴露与婴儿总出生体重呈负相关,
PFTrDA与女婴出生体重负相关,PFASs与头围无关Chen等[37] 中国台湾(2004—2005) 出生脐带血 429 脐带血中PFOS水平与出生体重和身长呈负相关 Tian等[14] 中国上海(2012) 妊娠早期 1292 妊娠期PFOS, PFDA和PFUdA暴露与出生时肛门生殖器距离呈负相关 Arbuckle等[52] 加拿大(2008—2011) 妊娠早期 403 妊娠期PFOS、PFOA或PFHxS暴露与肛门生殖器距离无关 Mwapasa等[12] 马拉维(2020—2021) 妊娠晚期 565 妊娠期PFOA、PFNA、PFHxS暴露与出生头围负相关,PFOA、
PFNA浓度与身长负相关,PFHxS浓度 与出生体重负相关 -
[1] 牛金波, 方广虹, 梁红, 等. 浙江省嘉善地区孕妇全氟化合物暴露水平及影响因素[J]. 环境与职业医学, 2021, 38(4): 368-378. NIU J B, FANG G H, LIANG H, et al. Concentrations and influencing factors of perfluoroalkyl and polyfluoroalkyl substances in plasma of pregnant women from Jiashan, Zhejiang Province[J]. Journal of Environmental and Occupational Medicine, 2021, 38(4): 368-378 (in Chinese).
[2] 谢珍珍, 何更生, 栾敏, 等. 妊娠期全氟化合物暴露与婴儿神经行为发育关联的队列研究[J]. 环境与职业医学, 2020, 37(6): 530-538. XIE Z Z, HE G S, LUAN M, et al. Associations between prenatal exposure to perfluoroalkyl substances and neurobehavioral development in infants: A cohort study[J]. Journal of Environmental and Occupational Medicine, 2020, 37(6): 530-538 (in Chinese).
[3] SCHRENK D, BIGNAMI M, BODIN L, et al. Risk to human health related to the presence of perfluoroalkyl substances in food[J]. September , 2020, 18(9): e06223. [4] HAUG L S, SALIHOVIC S, JOGSTEN I E, et al. Levels in food and beverages and daily intake of perfluorinated compounds in Norway[J]. Chemosphere, 2010, 80(10): 1137-1143. doi: 10.1016/j.chemosphere.2010.06.023 [5] CHU S G, LETCHER R J, McGOLDRICK D J, et al. A new fluorinated surfactant contaminant in biota: Perfluorobutane sulfonamide in several fish species[J]. Environmental Science & Technology, 2016, 50(2): 669-675. [6] FALANDYSZ J, TANIYASU S, GULKOWSKA A, et al. Is fish a major source of fluorinated surfactants and repellents in humans living on the Baltic coast?[J]. Environmental Science & Technology, 2006, 40(3): 748-751. [7] RYLANDER C, BRUSTAD M, FALK H, et al. Dietary predictors and plasma concentrations of perfluorinated compounds in a coastal population from northern Norway[J]. Journal of Environmental and Public Health, 2009, 2009: 268219. [8] DALLAIRE R, AYOTTE P, PEREG D, et al. Determinants of plasma concentrations of perfluorooctanesulfonate and brominated organic compounds in nunavik Inuit adults (canada)[J]. Environmental Science & Technology, 2009, 43(13): 5130-5136. [9] HALLDORSSON T I, FEI C Y, OLSEN J, et al. Dietary predictors of perfluorinated chemicals: A study from the Danish national birth cohort[J]. Environmental Science & Technology, 2008, 42(23): 8971-8977. [10] SCHWANZ T G, LLORCA M, FARRÉ M, et al. Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain[J]. Science of the Total Environment, 2016, 539: 143-152. doi: 10.1016/j.scitotenv.2015.08.034 [11] HEO J J, LEE J W, KIM S K, et al. Foodstuff analyses show that seafood and water are major perfluoroalkyl acids (PFAAs) sources to humans in Korea[J]. Journal of Hazardous Materials, 2014, 279: 402-409. doi: 10.1016/j.jhazmat.2014.07.004 [12] MWAPASA M, HUBER S, CHAKHAME B M, et al. Serum concentrations of selected poly- and perfluoroalkyl substances (PFASs) in pregnant women and associations with birth outcomes. A cross-sectional study from southern Malawi[J]. International Journal of Environmental Research and Public Health, 2023, 20(3): 1689. doi: 10.3390/ijerph20031689 [13] MARKS K J, CUTLER A J, JEDDY Z, et al. Maternal serum concentrations of perfluoroalkyl substances and birth size in British boys[J]. International Journal of Hygiene and Environmental Health, 2019, 222(5): 889-895. doi: 10.1016/j.ijheh.2019.03.008 [14] TIAN Y P, LIANG H, MIAO M, et al. Maternal plasma concentrations of perfluoroalkyl and polyfluoroalkyl substances during pregnancy and anogenital distance in male infants[J]. Hum Reprod, 2019, 34(7):1356-1368. [15] SKOGHEIM T S, WEYDE K V F, AASE H, et al. Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children[J]. Environmental Research, 2021, 202: 111692. doi: 10.1016/j.envres.2021.111692 [16] LUO F, CHEN Q, YU G Q, et al. Exposure to perfluoroalkyl substances and neurodevelopment in 2-year-old children: A prospective cohort study[J]. Environment International, 2022, 166: 107384. doi: 10.1016/j.envint.2022.107384 [17] LIU J Y, GAO X Y, WANG Y X, et al. Profiling of emerging and legacy per-/ polyfluoroalkyl substances in serum among pregnant women in China[J]. Environmental Pollution, 2021, 271: 116376. doi: 10.1016/j.envpol.2020.116376 [18] YANG J Q, WANG H X, DU H Y, et al. Exposure to perfluoroalkyl substances was associated with estrogen homeostasis in pregnant women[J]. Science of the Total Environment, 2022, 805: 150360. doi: 10.1016/j.scitotenv.2021.150360 [19] LIAO Q, TANG P, PAN D X, et al. Association of serum per- and polyfluoroalkyl substances and gestational anemia during different trimesters in Zhuang ethnic pregnancy women of Guangxi, China[J]. Chemosphere, 2022, 309: 136798. doi: 10.1016/j.chemosphere.2022.136798 [20] CHANG C J, RYAN P B, SMARR M M, et al. Serum per- and polyfluoroalkyl substance (PFAS) concentrations and predictors of exposure among pregnant African American women in the Atlanta area, Georgia[J]. Environmental Research, 2021, 198: 110445. doi: 10.1016/j.envres.2020.110445 [21] OH J, BENNETT D H, CALAFAT A M, et al. Prenatal exposure to per- and polyfluoroalkyl substances in association with autism spectrum disorder in the MARBLES study[J]. Environment International, 2021, 147: 106328. doi: 10.1016/j.envint.2020.106328 [22] STARLING A P, ADGATE J L, HAMMAN R F, et al. Perfluoroalkyl substances during pregnancy and offspring weight and adiposity at birth: Examining mediation by maternal fasting glucose in the healthy start study[J]. Environmental Health Perspectives, 2017, 125(6): 28669937. [23] SOUZA M C O, SARAIVA M C P, HONDA M, et al. Exposure to per- and polyfluorinated alkyl substances in pregnant Brazilian women and its association with fetal growth[J]. Environmental Research, 2020, 187: 109585. doi: 10.1016/j.envres.2020.109585 [24] DONLEY G M, TAYLOR E, JEDDY Z, et al. Association between in utero perfluoroalkyl substance exposure and anti-Müllerian hormone levels in adolescent females in a British cohort[J]. Environmental Research, 2019, 177: 108585. doi: 10.1016/j.envres.2019.108585 [25] BRANTSÆTER A L, WHITWORTH K W, YDERSBOND T A, et al. Determinants of plasma concentrations of perfluoroalkyl substances in pregnant Norwegian women[J]. Environment International, 2013, 54: 74-84. doi: 10.1016/j.envint.2012.12.014 [26] COSTA O, IÑIGUEZ C, MANZANO-SALGADO C B, et al. First-trimester maternal concentrations of polyfluoroalkyl substances and fetal growth throughout pregnancy[J]. Environment International, 2019, 130: 104830. doi: 10.1016/j.envint.2019.05.024 [27] DENISSEN J, REYNEKE B, WASO-REYNEKE M, et al. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health[J]. International Journal of Hygiene and Environmental Health, 2022, 244: 114006. doi: 10.1016/j.ijheh.2022.114006 [28] KASHINO I, SASAKI S, OKADA E, et al. Prenatal exposure to 11 perfluoroalkyl substances and fetal growth: A large-scale, prospective birth cohort study[J]. Environment International, 2020, 136: 105355. doi: 10.1016/j.envint.2019.105355 [29] ASHLEY-MARTIN J, DODDS L, ARBUCKLE T E, et al. Maternal and neonatal levels of perfluoroalkyl substances in relation to gestational weight gain[J]. International Journal of Environmental Research and Public Health, 2016, 13(1): 146. doi: 10.3390/ijerph13010146 [30] ZHENG P, LIU Y X, AN Q, et al. Prenatal and postnatal exposure to emerging and legacy per-/ polyfluoroalkyl substances: Levels and transfer in maternal serum, cord serum, and breast milk[J]. Science of the Total Environment, 2022, 812: 152446. doi: 10.1016/j.scitotenv.2021.152446 [31] LI Y Q, YU N Y, DU L T, et al. Transplacental transfer of per- and polyfluoroalkyl substances identified in paired maternal and cord sera using suspect and nontarget screening[J]. Environmental Science & Technology, 2020, 54(6): 3407-3416. [32] WU Y Q, BAO J A, LIU Y, et al. A review on per- and polyfluoroalkyl substances in pregnant women: Maternal exposure, placental transfer, and relevant model simulation[J]. Toxics, 2023, 11(5): 430. doi: 10.3390/toxics11050430 [33] van BEIJSTERVELDT I A L P, van ZELST B D, van den BERG S A A, et al. Longitudinal poly- and perfluoroalkyl substances (PFAS) levels in Dutch infants[J]. Environment International, 2022, 160: 107068. doi: 10.1016/j.envint.2021.107068 [34] XIA X W, ZHENG Y X, TANG X W, et al. Nontarget identification of novel per- and polyfluoroalkyl substances in cord blood samples[J]. Environmental Science & Technology, 2022, 56(23): 17061-17069. [35] MANZANO-SALGADO C B, CASAS M, LOPEZ-ESPINOSA M J, et al. Transfer of perfluoroalkyl substances from mother to fetus in a Spanish birth cohort[J]. Environmental Research, 2015, 142: 471-478. doi: 10.1016/j.envres.2015.07.020 [36] OH J, SHIN H M, NISHIMURA T, et al. Perfluorooctanoate and perfluorooctane sulfonate in umbilical cord blood and child cognitive development: Hamamatsu Birth Cohort for Mothers and Children (HBC Study)[J]. Environment International, 2022, 163: 107215. doi: 10.1016/j.envint.2022.107215 [37] CHEN M H, NG S, HSIEH C J, et al. The impact of prenatal perfluoroalkyl substances exposure on neonatal and child growth[J]. Science of the Total Environment, 2017, 607/608: 669-675. doi: 10.1016/j.scitotenv.2017.06.273 [38] GÜTZKOW K B, HAUG L S, THOMSEN C, et al. Placental transfer of perfluorinated compounds is selective - A Norwegian Mother and Child sub-cohort study[J]. International Journal of Hygiene and Environmental Health, 2012, 215(2): 216-219. doi: 10.1016/j.ijheh.2011.08.011 [39] FROMME H, MOSCH C, MOROVITZ M, et al. Pre- and postnatal exposure to perfluorinated compounds (PFCs)[J]. Environmental Science & Technology, 2010, 44(18): 7123-7129. [40] WANG J H, ZHANG J, FAN Y, et al. Association between per- and polyfluoroalkyl substances and risk of gestational diabetes mellitus[J]. International Journal of Hygiene and Environmental Health, 2022, 240: 113904. doi: 10.1016/j.ijheh.2021.113904 [41] HU C Y, QIAO J C, GUI S Y, et al. Perfluoroalkyl and polyfluoroalkyl substances and hypertensive disorders of pregnancy: A systematic review and meta-analysis[J]. Environmental Research, 2023, 231(Pt 2): 116064. [42] PRESTON E V, WEBSTER T F, OKEN E, et al. Maternal plasma per- and polyfluoroalkyl substance concentrations in early pregnancy and maternal and neonatal thyroid function in a prospective birth cohort: Project viva (USA)[J]. Environmental Health Perspectives, 2018, 126(2): 027013. [43] XIAO C, GRANDJEAN P, VALVI D, et al. Associations of exposure to perfluoroalkyl substances with thyroid hormone concentrations and birth size[J]. The Journal of Clinical Endocrinology and Metabolism, 2020, 105(3): 735-745. doi: 10.1210/clinem/dgz147 [44] YANG L, LI J G, LAI J Q, et al. Placental transfer of perfluoroalkyl substances and associations with thyroid hormones: Beijing prenatal exposure study[J]. Scientific Reports, 2016, 6: 21699. doi: 10.1038/srep21699 [45] WANG Y, ROGAN W J, CHEN P C, et al. Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: maternal and infant cohort study[J]. Environmental Health Perspectives, 2014, 122(5): 529-534. doi: 10.1289/ehp.1306925 [46] WEBSTER G M, VENNERS S A, MATTMAN A, et al. Associations between Perfluoroalkyl acids (PFASs) and maternal thyroid hormones in early pregnancy: A population-based cohort study[J]. Environmental Research, 2014, 133: 338-347. doi: 10.1016/j.envres.2014.06.012 [47] AIMUZI R, LUO K, HUANG R, et al. Perfluoroalkyl and polyfluroalkyl substances and maternal thyroid hormones in early pregnancy[J]. Environmental Pollution, 2020, 264: 114557. doi: 10.1016/j.envpol.2020.114557 [48] LIU H X, PAN Y T, JIN S N, et al. Associations between six common per- and polyfluoroalkyl substances and estrogens in neonates of China[J]. Journal of Hazardous Materials, 2021, 407: 124378. doi: 10.1016/j.jhazmat.2020.124378 [49] WANG H X, DU H Y, YANG J Q, et al. PFOS, PFOA, estrogen homeostasis, and birth size in Chinese infants[J]. Chemosphere, 2019, 221: 349-355. doi: 10.1016/j.chemosphere.2019.01.061 [50] YAO Q, SHI R, WANG C F, et al. Cord blood Per- and polyfluoroalkyl substances, placental steroidogenic enzyme, and cord blood reproductive hormone[J]. Environment International, 2019, 129: 573-582. doi: 10.1016/j.envint.2019.03.047 [51] MANZANO-SALGADO C B, CASAS M, LOPEZ-ESPINOSA M J, et al. Prenatal exposure to perfluoroalkyl substances and birth outcomes in a Spanish birth cohort[J]. Environment International, 2017, 108: 278-284. doi: 10.1016/j.envint.2017.09.006 [52] ARBUCKLE T E, MacPHERSON S, FOSTER W G, et al. Prenatal perfluoroalkyl substances and newborn anogenital distance in a Canadian cohort[J]. Reproductive Toxicology, 2020, 94: 31-39. doi: 10.1016/j.reprotox.2020.03.011 [53] KIM S, CHOI K, JI K, et al. Trans-placental transfer of thirteen perfluorinated compounds and relations with fetal thyroid hormones[J]. Environmental Science & Technology, 2011, 45(17): 7465-7472. [54] LIANG H, WANG Z L, MIAO M H, et al. Prenatal exposure to perfluoroalkyl substances and thyroid hormone concentrations in cord plasma in a Chinese birth cohort[J]. Environmental Health:a Global Access Science Source, 2020, 19(1): 127.