[1] CHAE Y, AN Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J]. Environmental Pollution, 2018, 240: 387-395. doi: 10.1016/j.envpol.2018.05.008
[2] LI J, SONG Y, CAI Y B. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 2020, 257: 113570. doi: 10.1016/j.envpol.2019.113570
[3] NIZZETTO L, BUSSI G, FUTTER M N, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science. Processes & Impacts, 2016, 18(8): 1050-1059.
[4] XU S, MA J, JI R, et al. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects[J]. Science of the Total Environment, 2020, 703: 134699. doi: 10.1016/j.scitotenv.2019.134699
[5] ENFRIN M, DUMÉE L F, LEE J. Nano/microplastics in water and wastewater treatment processes - Origin, impact and potential solutions[J]. Water Research, 2019, 161: 621-638. doi: 10.1016/j.watres.2019.06.049
[6] CHEN H B, HUA X, YANG Y, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 2021, 419: 126482. doi: 10.1016/j.jhazmat.2021.126482
[7] DUAN J J, BOLAN N, LI Y, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments[J]. Water Research, 2021, 196: 117011. doi: 10.1016/j.watres.2021.117011
[8] JIANG G N, ZHANG L, ZHU Y M, et al. Clinical consensus on preoperative pulmonary function assessment in patients undergoing pulmonary resection (first edition)[J]. Current Challenges in Thoracic Surgery, 2019, 1: 7. doi: 10.21037/ccts.2019.06.01
[9] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190
[10] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 2016, 50(20): 10777-10779.
[11] FOSSI M C, PEDÀ C, COMPA M, et al. Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity[J]. Environmental Pollution, 2018, 237: 1023-1040. doi: 10.1016/j.envpol.2017.11.019
[12] GALL S C, THOMPSON R C. The impact of debris on marine life[J]. Marine Pollution Bulletin, 2015, 92(1/2): 170-179.
[13] LIU P, ZHAN X, WU X W, et al. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks[J]. Chemosphere, 2020, 242: 125193. doi: 10.1016/j.chemosphere.2019.125193
[14] TER HALLE A, LADIRAT L, MARTIGNAC M, et al. To what extent are microplastics from the open ocean weathered?[J]. Environmental Pollution, 2017, 227: 167-174. doi: 10.1016/j.envpol.2017.04.051
[15] ZHOU L L, WANG T C, QU G Z, et al. Probing the aging processes and mechanisms of microplastic under simulated multiple actions generated by discharge plasma[J]. Journal of Hazardous Materials, 2020, 398: 122956. doi: 10.1016/j.jhazmat.2020.122956
[16] LUO H W, ZHAO Y Y, LI Y, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Science of the Total Environment, 2020, 714: 136862. doi: 10.1016/j.scitotenv.2020.136862
[17] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122
[18] LIU J, ZHANG T, TIAN L L, et al. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J]. Environmental Science & Technology, 2019, 53(10): 5805-5815.
[19] LIU P, LU K, LI J L, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 2020, 384: 121193. doi: 10.1016/j.jhazmat.2019.121193
[20] LIU P, WU X W, LIU H Y, et al. Desorption of pharmaceuticals from pristine and aged polystyrene microplastics under simulated gastrointestinal conditions[J]. Journal of Hazardous Materials, 2020, 392: 122346. doi: 10.1016/j.jhazmat.2020.122346
[21] HUANG Y J, DING J N, ZHANG G S, et al. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging[J]. Science of the Total Environment, 2021, 752: 142256. doi: 10.1016/j.scitotenv.2020.142256
[22] JEONG C B, WON E J, KANG H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16): 8849-8857.
[23] CAPOLUPO M, SØRENSEN L, JAYASENA K D R, et al. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms[J]. Water Research, 2020, 169: 115270. doi: 10.1016/j.watres.2019.115270
[24] COLE M, GALLOWAY T S. Ingestion of nanoplastics and microplastics by Pacific oyster larvae[J]. Environmental Science & Technology, 2015, 49(24): 14625-14632.
[25] ATUGODA T, WIJESEKARA H, WERELLAGAMA D R I B, et al. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water[J]. Environmental Technology & Innovation, 2020, 19: 100971.
[26] ELIZALDE-VELÁZQUEZ A, SUBBIAH S, ANDERSON T A, et al. Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics[J]. Science of the Total Environment, 2020, 715: 136974. doi: 10.1016/j.scitotenv.2020.136974
[27] GUO X, CHEN C, WANG J L. Sorption of sulfamethoxazole onto six types of microplastics[J]. Chemosphere, 2019, 228: 300-308. doi: 10.1016/j.chemosphere.2019.04.155
[28] LI H, WANG F H, LI J N, et al. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation[J]. Chemosphere, 2021, 264: 128556. doi: 10.1016/j.chemosphere.2020.128556
[29] QIU Y, ZHENG M G, WANG L, et al. Sorption of polyhalogenated carbazoles (PHCs) to microplastics[J]. Marine Pollution Bulletin, 2019, 146: 718-728. doi: 10.1016/j.marpolbul.2019.07.034
[30] WANG Q J, ZHANG Y, WANGJIN X X, et al. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation[J]. Journal of Environmental Sciences, 2020, 87: 272-280. doi: 10.1016/j.jes.2019.07.006
[31] SUN Y R, YUAN J H, ZHOU T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review[J]. Environmental Pollution, 2020, 265: 114864. doi: 10.1016/j.envpol.2020.114864
[32] KWON B G, KOIZUMI K, CHUNG S Y, et al. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution[J]. Journal of Hazardous Materials, 2015, 300: 359-367. doi: 10.1016/j.jhazmat.2015.07.039
[33] LUO H W, LI Y, ZHAO Y Y, et al. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics[J]. Environmental Pollution, 2020, 257: 113475. doi: 10.1016/j.envpol.2019.113475
[34] NAKASHIMA E, ISOBE A, KAKO S, et al. The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris[J]. Marine Pollution Bulletin, 2016, 107(1): 333-339. doi: 10.1016/j.marpolbul.2016.03.038
[35] LIU P, SHI Y Q, WU X W, et al. Review of the artificially-accelerated aging technology and ecological risk of microplastics[J]. Science of the Total Environment, 2021, 768: 144969. doi: 10.1016/j.scitotenv.2021.144969
[36] FAN X L, ZOU Y F, GENG N, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process[J]. Journal of Hazardous Materials, 2021, 401: 123363. doi: 10.1016/j.jhazmat.2020.123363
[37] CAI L Q, WANG J D, PENG J P, et al. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments[J]. Science of the Total Environment, 2018, 628/629: 740-747. doi: 10.1016/j.scitotenv.2018.02.079
[38] LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. doi: 10.1016/j.scitotenv.2020.137762
[39] ZHANG J H, CHEN H B, HE H, et al. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions[J]. Chemosphere, 2020, 245: 125628. doi: 10.1016/j.chemosphere.2019.125628
[40] LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588.
[41] LUO H W, ZENG Y F, ZHAO Y Y, et al. Effects of advanced oxidation processes on leachates and properties of microplastics[J]. Journal of Hazardous Materials, 2021, 413: 125342. doi: 10.1016/j.jhazmat.2021.125342
[42] MUNOZ M, ORTIZ D, NIETO-SANDOVAL J, et al. Adsorption of micropollutants onto realistic microplastics: Role of microplastic nature, size, age, and NOM fouling[J]. Chemosphere, 2021, 283: 131085. doi: 10.1016/j.chemosphere.2021.131085
[43] REN Z F, GUI X Y, WEI Y Q, et al. Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling[J]. Water Research, 2021, 202: 117407. doi: 10.1016/j.watres.2021.117407
[44] KONG F X, XU X, XUE Y G, et al. Investigation of the adsorption of sulfamethoxazole by degradable microplastics artificially aged by chemical oxidation[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(1): 155-165. doi: 10.1007/s00244-021-00856-w
[45] WANG J C, WANG H. Fenton treatment for flotation separation of polyvinyl chloride from plastic mixtures[J]. Separation and Purification Technology, 2017, 187: 415-425. doi: 10.1016/j.seppur.2017.06.076
[46] ARP H P H, KÜHNEL D, RUMMEL C, et al. Weathering plastics as a planetary boundary threat: Exposure, fate, and hazards[J]. Environmental Science & Technology, 2021, 55(11): 7246-7255.
[47] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100
[48] WANG H, QIU C, SONG Y L, et al. Adsorption of tetracycline and Cd(II) on polystyrene and polyethylene terephthalate microplastics with ultraviolet and hydrogen peroxide aging treatment[J]. Science of the Total Environment, 2022, 845: 157109. doi: 10.1016/j.scitotenv.2022.157109
[49] BRANDON J, GOLDSTEIN M, OHMAN M D. Long-term aging and degradation of microplastic particles: Comparing in situ oceanic and experimental weathering patterns[J]. Marine Pollution Bulletin, 2016, 110(1): 299-308. doi: 10.1016/j.marpolbul.2016.06.048
[50] VEERASINGAM S, SAHA M H, SUNEEL V, et al. Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India[J]. Chemosphere, 2016, 159: 496-505. doi: 10.1016/j.chemosphere.2016.06.056
[51] MENG J, XU B L, LIU F, et al. Effects of chemical and natural ageing on the release of potentially toxic metal additives in commercial PVC microplastics[J]. Chemosphere, 2021, 283: 131274. doi: 10.1016/j.chemosphere.2021.131274
[52] XU Y, WU Y, ZHANG W, et al. Performance of artificial sweetener sucralose mineralization via UV/O3 process: Kinetics, toxicity and intermediates[J]. Chemical Engineering Journal, 2018, 353: 626-634. doi: 10.1016/j.cej.2018.07.090
[53] ZHU K C, JIA H Z, SUN Y J, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species[J]. Water Research, 2020, 173: 115564. doi: 10.1016/j.watres.2020.115564
[54] LIN J L, YAN D Y, FU J W, et al. Ultraviolet-C and vacuum ultraviolet inducing surface degradation of microplastics[J]. Water Research, 2020, 186: 116360. doi: 10.1016/j.watres.2020.116360
[55] MIRANDA M N, SAMPAIO M J, TAVARES P B, et al. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors[J]. Science of the Total Environment, 2021, 796: 148914. doi: 10.1016/j.scitotenv.2021.148914
[56] GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13): 7252-7259.
[57] WU X W, LIU P, HUANG H, et al. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations[J]. Science of the Total Environment, 2020, 717: 137033. doi: 10.1016/j.scitotenv.2020.137033
[58] WU X W, HUANG H, SHI Y Q, et al. Progress on the photo aging mechanism of microplastics and related impact factors in water environment[J]. Chinese Science Bulletin, 2021, 66(36): 4619-4632. doi: 10.1360/TB-2021-0376
[59] SINGH B, SHARMA N. Mechanistic implications of plastic degradation[J]. Polymer Degradation and Stability, 2008, 93(3): 561-584. doi: 10.1016/j.polymdegradstab.2007.11.008
[60] YOUSIF E, HADDAD R. Photodegradation and photostabilization of polymers, especially polystyrene: Review[J]. SpringerPlus, 2013, 2: 398. doi: 10.1186/2193-1801-2-398
[61] GUO X T, YIN Y Y, YANG C, et al. Maize straw decorated with sulfide for tylosin removal from the water[J]. Ecotoxicology and Environmental Safety, 2018, 152: 16-23. doi: 10.1016/j.ecoenv.2018.01.025
[62] HU J Q, YANG S Z, GUO L, et al. Microscopic investigation on the adsorption of lubrication oil on microplastics[J]. Journal of Molecular Liquids, 2017, 227: 351-355. doi: 10.1016/j.molliq.2016.12.043
[63] DEWIL R, MANTZAVINOS D, POULIOS I, et al. New perspectives for advanced oxidation processes[J]. Journal of Environmental Management, 2017, 195: 93-99. doi: 10.1016/j.jenvman.2017.04.010
[64] GIWA A, YUSUF A, BALOGUN H A, et al. Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review[J]. Process Safety and Environmental Protection, 2021, 146: 220-256. doi: 10.1016/j.psep.2020.08.015
[65] LI X W, MEI Q Q, CHEN L B, et al. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process[J]. Water Research, 2019, 157: 228-237. doi: 10.1016/j.watres.2019.03.069
[66] FARINELLI G, MINELLA M, PAZZI M, et al. Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments[J]. Journal of Hazardous Materials, 2020, 393: 122413. doi: 10.1016/j.jhazmat.2020.122413
[67] JIA H Z, ZHAO S, ZHU K C, et al. Activate persulfate for catalytic degradation of adsorbed anthracene on coking residues: Role of persistent free radicals[J]. Chemical Engineering Journal, 2018, 351: 631-640. doi: 10.1016/j.cej.2018.06.147
[68] DONG C C, JI J H, SHEN B, et al. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol[J]. Environmental Science & Technology, 2018, 52(19): 11297-11308.
[69] GUAN R P, YUAN X Z, WU Z B, et al. Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: A review[J]. Chemical Engineering Journal, 2018, 339: 519-530. doi: 10.1016/j.cej.2018.01.153
[70] WU Z B, YUAN X Z, ZHONG H, et al. Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite[J]. Scientific Reports, 2016, 6: 25638. doi: 10.1038/srep25638
[71] XU X R, LI X Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion[J]. Separation and Purification Technology, 2010, 72(1): 105-111. doi: 10.1016/j.seppur.2010.01.012
[72] JIANG L B, YUAN X Z, LIANG J, et al. Nanostructured core-shell electrode materials for electrochemical capacitors[J]. Journal of Power Sources, 2016, 331: 408-425. doi: 10.1016/j.jpowsour.2016.09.054
[73] WANG H, YUAN X Z, WU Y, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Applied Catalysis B:Environmental, 2015, 174/175: 445-454. doi: 10.1016/j.apcatb.2015.03.037
[74] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151: 178-188. doi: 10.1016/j.chemosphere.2016.02.055
[75] MEI Q, SUN J F, HAN D N, et al. Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: Mechanisms, kinetics and toxicity assessment[J]. Chemical Engineering Journal, 2019, 373: 668-676. doi: 10.1016/j.cej.2019.05.095
[76] WANG W Q, CHEN M, WANG D B, et al. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates[J]. Science of the Total Environment, 2021, 772: 145522. doi: 10.1016/j.scitotenv.2021.145522
[77] GUO C X, WANG L L, LANG D N, et al. UV and chemical aging alter the adsorption behavior of microplastics for tetracycline[J]. Environmental Pollution, 2023, 318: 120859. doi: 10.1016/j.envpol.2022.120859
[78] GANIYU S O, ZHOU M H, MARTÍNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B:Environmental, 2018, 235: 103-129. doi: 10.1016/j.apcatb.2018.04.044
[79] ARSLAN-ALATON I, GURSES F. Photo-Fenton-like and photo-Fenton-like oxidation of Procaine Penicillin G formulation effluent[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 165(1/2/3): 165-175.
[80] HÜFFER T, WENIGER A K, HOFMANN T. Sorption of organic compounds by aged polystyrene microplastic particles[J]. Environmental Pollution, 2018, 236: 218-225. doi: 10.1016/j.envpol.2018.01.022
[81] LIU X M, SUN P P, QU G J, et al. Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes[J]. Journal of Hazardous Materials, 2021, 407: 124836. doi: 10.1016/j.jhazmat.2020.124836
[82] ZOU W, XIA M L, JIANG K, et al. Photo-oxidative degradation mitigated the developmental toxicity of polyamide microplastics to zebrafish larvae by modulating macrophage-triggered proinflammatory responses and apoptosis[J]. Environmental Science & Technology, 2020, 54(21): 13888-13898.
[83] 姬庆松, 孔祥程, 王信凯, 等. 环境微塑料与有机污染物的相互作用及联合毒性效应研究进展[J]. 环境化学, 2022, 41(1): 70-82. doi: 10.7524/j.issn.0254-6108.2020090303 JI Q S, KONG X C, WANG X K, et al. The interaction and combined toxic effects of microplastics and organic pollutants in the environment: A review[J]. Environmental Chemistry, 2022, 41(1): 70-82 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020090303
[84] SONG Y L, ZHAO J Q, ZHENG L, et al. Adsorption behaviors and mechanisms of humic acid on virgin and aging microplastics[J]. Journal of Molecular Liquids, 2022, 363: 119819. doi: 10.1016/j.molliq.2022.119819
[85] LIU X M, XU J, ZHAO Y P, et al. Hydrophobic sorption behaviors of 17β-estradiol on environmental microplastics[J]. Chemosphere, 2019, 226: 726-735. doi: 10.1016/j.chemosphere.2019.03.162
[86] VELZEBOER I, KWADIJK C J A F, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science & Technology, 2014, 48(9): 4869-4876.
[87] WANG T, YU C C, CHU Q, et al. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films[J]. Chemosphere, 2020, 244: 125491. doi: 10.1016/j.chemosphere.2019.125491
[88] MO Q M, YANG X J, WANG J J, et al. Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects[J]. Environmental Pollution, 2021, 291: 118120. doi: 10.1016/j.envpol.2021.118120
[89] ANTUNES J C, FRIAS J G L, MICAELO A C, et al. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants[J]. Estuarine, Coastal and Shelf Science, 2013, 130: 62-69. doi: 10.1016/j.ecss.2013.06.016
[90] LIANG S J, XU S X, WANG C, et al. Enhanced alteration of poly(vinyl chloride) microplastics by hydrated electrons derived from indole-3-acetic acid assisted by a common cationic surfactant[J]. Water Research, 2021, 191: 116797. doi: 10.1016/j.watres.2020.116797
[91] WANG C, LIANG S J, BAI L H, et al. Structure-dependent surface catalytic degradation of cephalosporin antibiotics on the aged polyvinyl chloride microplastics[J]. Water Research, 2021, 206: 117732. doi: 10.1016/j.watres.2021.117732
[92] FU L N, LI J, WANG G Y, et al. Adsorption behavior of organic pollutants on microplastics[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112207. doi: 10.1016/j.ecoenv.2021.112207
[93] ÁLVAREZ-TORRELLAS S, MUNOZ M, GLÄSEL J, et al. Highly efficient removal of pharmaceuticals from water by well-defined carbide-derived carbons[J]. Chemical Engineering Journal, 2018, 347: 595-606. doi: 10.1016/j.cej.2018.04.127
[94] GHAFFAR A, GHOSH S, LI F F, et al. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates[J]. Environmental Pollution, 2015, 206: 502-509. doi: 10.1016/j.envpol.2015.08.001
[95] HÜFFER T, HOFMANN T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environmental Pollution, 2016, 214: 194-201. doi: 10.1016/j.envpol.2016.04.018
[96] MAILHOT B, GARDETTE J L. Polystyrene photooxidation. 2. A pseudo wavelength effect[J]. Macromolecules, 1992, 25(16): 4127-4133. doi: 10.1021/ma00042a013
[97] GUO X, WANG J L. The chemical behaviors of microplastics in marine environment: A review[J]. Marine Pollution Bulletin, 2019, 142: 1-14. doi: 10.1016/j.marpolbul.2019.03.019