-
有机磷酸酯(organophosphate esters, OPEs)是一类应用领域涉及大量工业和生活产品的合成类有机物,可用作提取剂、消泡剂和增塑剂等. 作为多溴联苯醚等卤系阻燃剂的优良替代品,近年来OPEs市场应用得到了进一步扩展[1]. OPEs主要是添加型助剂,在生产和使用过程中容易以挥发、磨损和浸润等方式释放到各类环境介质中[2]. 环境介质中OPEs污染物的种类逐渐增多,组成日趋复杂,同时OPEs的浓度也呈现出稳定上升趋势[3 − 4]. 相关毒理学研究发现了多种有机磷酸酯污染物的新潜在风险和效应终点[5 − 7]. OPEs的污染状况和相关影响引起众多学者的兴趣,成为环境研究的热点之一[8 − 9].
有机磷酸酯污染物的环境归宿以水相居多[10]. 不同地区湖水、河水和海水中均检测到大量OPEs,浓度水平在几个ng·L−1到数十μg·L−1不等. 水体主要污染物包括磷酸三(2-氯异丙基)酯(TCPP)、三(2-氯乙基)磷酸酯(TCEP)、磷酯三丁酯(TnBP)、磷酸三乙酯(TEP)和磷酸三(丁氧基乙基)酯(TBEP)等[3 − 4, 8 − 9, 11]. OPEs污染的地区差别较为明显。我国太湖流域和松辽流域的OPEs浓度普遍偏高;现代化程度高或工业化发展迅速的城市周边水环境OPEs污染程度较严重,组成谱图也更繁杂[11]. Wang等[12]曾在中国多个城市污水处理厂进水中发现了30余种OPEs,有11种是通过非靶标筛查方法首次检测到的. 地表水OPEs污染常随采样季节而变化,变化特点具有多样性. 旱季污染程度高于雨季的报道居多,但雨季污染浓度偏高或旱季雨季并无明显差别的现象也有发现[13 − 15]. 不少研究认为地表水有机磷酸酯的污染来源存在多重性. 大气干湿沉降,工业废水和生活污水排放,交通运输以及室内外建筑材料释放等均有重要贡献[16 − 17]. 此外,现有自来水厂处理工艺并不能有效去除水源地表层水中所有的有机磷酸酯,尤其是TCPP和TCEP等卤代OPEs;部分水厂或输水管网还可能存在类似管道引入的现象[13]. 人群可通过呼吸吸入以及膳食和饮水摄入等途径产生OPEs接触. 尽管目前OPEs引起的健康风险很低,但人群总暴露量却逐年增加,产生的危害不可轻视[13]. 需要重点关注的还有OPEs对水生生态系统的影响,中国部分水体的OPEs污染已存在一定生态风险[18 − 20].
从文献调研结果看,目前针对大型城市特定用途水体的OPEs污染研究仍不全面[3, 21 − 22]. 上海市人口密度高,周边地区工业化水平发达,水源地水质受到OPEs污染的影响相对严重,可能会对生态系统和人群健康产生不良影响. 本研究旨在分析上海市主要水源地地表水的OPEs污染现状;探讨重要污染来源和影响因素;继而评估OPEs污染的生态和健康影响.
上海市水源地有机磷酸酯类化合物的污染特性和风险评价
Pollution characteristics and risk assessment of organophosphate esters pollutants in water source from Shanghai, China
-
摘要: 有机磷酸酯(organophosphate esters,OPEs)是一类受到广泛关注的新污染物. 为更好地了解其在城市水环境的污染现状,本文分析了上海市3个水源地表层水的OPEs赋存特性,探讨了可能的生态健康影响. 首先,水源地表层水中普遍存在多种OPEs,16种OPEs总浓度为83.9—851 ng·L−1(中值:279 ng·L−1);主要污染物包括磷酸三(2-氯异丙基)酯(TCPP)和磷酯三丁酯(TnBP)等. 其次,表层水 OPEs污染具有较强的时间变化特点,浓度变化呈现出采样点差异性,而组成分布变化具有相似性. 初步探讨了降雨量对OPEs污染水平的可能影响,发现两者并未表现出明显的关联. 另外,统计学分析结果表明,地表水OPEs的来源可能较为复杂. 风险评估结果提示TnBP和2-乙基己基二苯基磷酸酯(EHDPP)等对水生生物可产生低至中等生态风险,亟需重视;而目前通过饮水产生的健康风险较低.Abstract: As emerging pollutants, organophosphate esters (OPEs) have been widely concerned in recent years. To further understand their occurrences in aquatic environments surrounding metropolitan areas, the distribution characteristics of OPEs in surface water from three water source areas (A, B, C) in Shanghai, China were studied, along with their potential ecological and health impacts. OPEs were prevalent in surface water, with total concentrations ranging from 83.9 ng·L−1 to 851 ng·L−1 (median 279 ng·L−1). Among the 16 individual OPEs, tri (2-chloroisopropyl) phosphate (TCPP), tributyl phosphate (TnBP), and two others were the dominant pollutants. Obvious temporal variations were observed in water source area A and B, however, while the concentration trends differed, the compositional distribution changes were similar between these two areas. The potential impact of rainfall was preliminarily examined, but no discernible correlation with contamination levels was found in area A or B. Additional, the original sources of OPEs in surface water were likely complex. Risk assessments indicated that the ecological risks of these triesters to aquatic organisms were low to moderate, primarily due to TnBP and 2-ethylhexyl diphenyl phosphate (EHDPP), which warrant closer attention. However, the potential health risk through drinking water was currently negligible.
-
表 1 有机磷酸酯分析的质谱参数
Table 1. Mass spectrum parameters of organophosphate analysis
化合物
Compound母离子
Parent ion (m/z)子离子
Daughter ion (m/z)化合物
Compound母离子
Parent ion (m/z)子离子
Daughter ion (m/z)TMP 140.9 108.8*,79.1 TDBPP 698.5 299.1*,500.8 TEP 183.0 127.0*,98.7 DnBP 209.1 79.0*,153.0 TPrP 225.1 141.0,99.0* DPhP 249.0 92.9*,79.0 TnBP 267.1 155.0*,98.9 BDCPP 318.9 35.1*,112.9 TBEP 399.2 298.9*,199 TnBP-d27 294.4 166.3*,230.3 TEHP 435.5 112.9*,98.7 TBEP-d27 426.4 208.1*,317.4 TCrP 369.3 243.3*,164.8 TEHP-d51 486.7 102.2*,230.4 EHDPP 363.2 153.1,251.0* TPhP-d15 342.2 223.2*,262.3 TPhP 327.1 152.1*,77.1 TCEP-d12 297.0 67.0,102.1* TCEP 284.8 223.1*,99.3 TDBPP-d15 713.7 146.9,265.1* TCPP 327.0 174.7*,99.0 BDCPP-d10 327.0 112.9,180.7* TDCPP 430.9 99.0*,208.7 *定量离子(Ions for quantitative determination). 表 2 有机磷酸酯对藻类、甲壳类和鱼类的生态风险影响
Table 2. The ecological risk of organophosphate esters to algae, crustaceans, and fish
化合物
Compound水生生物
Aquatic organism半致死浓度/(mg·L−1)
Lethal concentration预测无效应浓度/(ng·L−1)
Predicted no effect
concentration水源地A
Water source A水源地B
Water source BRQ RQ/% RQ RQ/% TEP 藻类 900 900000 1.27×10−5—1.86×10−4 0.4 0—7.14×10−5 0.2 甲壳类 350 350000 3.27×10−5—4.79×10−4 0.7 0—1.84×10−4 0.1 鱼类 2140 2140000 5.36×10−6—7.83×10−4 0.2 0—3.00×10−5 0.1 TnBP 藻类 4.2 4200 3.55×10−3—3.08×10−2 45.8 1.01×10−3—6.84×10−3 32.1 甲壳类 3.65 3650 4.09×10−3—3.55×10−2 17.1 1.16×10−3—7.87×10−3 14.5 鱼类 8.8 8800 1.70×10−3—1.47×10−2 24.2 4.82×10−3—3.26×10−3 17.2 TBEP 藻类 — — — — — — 甲壳类 75 75000 2.52×10−5—3.57×10−4 0.1 0—5.97×10−5 0.1 鱼类 13 13000 1.45×10−4—2.06×10−3 3.6 0—3.45×10−3 1.2 TEHP 藻类 — — — — — — 甲壳类 — — — — — — 鱼类 500 500000 0—6.88×10−6 0 0—5.74×10−6 0 TCrP 藻类 0.29 290 0—4.10×10−3 2.3 0—9.55×10−3 6.0 甲壳类 0.27 270 0—4.41×10−3 0.2 0—8.26×10−5 0.5 鱼类 0.11 110 0—1.08×10−2 7.2 0—1.07×10−2 8.4 TPhP 藻类 0.5 500 0—5.86×10−3 9.9 6.92×10−3—8.08×10−3 36.9 甲壳类 1 1000 0—2.93×10−3 2.0 3.46×10−3—4.04×10−3 9.8 鱼类 0.7 700 0—4.19×10−3 7.9 4.95×10−3—5.77×10−3 28.6 EHDPP 藻类 — — — — — — 甲壳类 0.018 18 0—5.11×10−1 70.5 0—1.82×10−1 62.9 鱼类 — — — — — — TCEP 藻类 51 51000 1.33×10−3—4.30×10−3 15.0 3.71×10−4—9.24×10−3 7.2 甲壳类 330 330000 2.05×10−3—6.65×10−3 0.7 5.73×10−5—1.43×10−3 0.5 鱼类 90 90000 7.51×10−3—2.44×10−3 9.3 2.10×10−4—5.24×10−3 4.4 TCPP 藻类 45 45000 2.92×10−3—6.64×10−3 27.4 1.02×10−3—4.02×10−3 22.1 甲壳类 91 91000 1.44×10−3—3.28×10−3 5.2 5.06×10−4—1.99×10−3 5.2 鱼类 30 30000 4.38×10−3—9.96×10−3 43.3 1.53×10−3—6.03×10−3 35.8 TDCPP 藻类 39 39000 1.35×10−3—4.64×10−3 1.4 7.67×10−5—1.84×10−3 1.5 甲壳类 4.2 4200 1.25×10−3—4.30×10−3 3.8 7.12×10−4—1.71×10−3 6.9 鱼类 5.1 5100 1.03×10−3—3.54×10−3 11.4 5.86×10−4—1.41×10−3 12.6 ΣOPEs 藻类 — — 8.45×10−3—4.83×10−2 — 4.95×10−3—1.39×10−2 — 甲壳类 — — 1.21×10−2—5.19×10−1 — 3.67×10−3—1.94×10−1 — 鱼类 — — 9.64×10−3—4.25×10−2 — 4.83×10−3—1.33×10−2 — -
[1] CHEN Y Q, ZHANG Q, LUO T W, et al. Occurrence, distribution and health risk assessment of organophosphate esters in outdoor dust in Nanjing, China: Urban vs. rural areas[J]. Chemosphere, 2019, 231: 41-50. doi: 10.1016/j.chemosphere.2019.05.135 [2] MA J, ZHU H K, KANNAN K. Organophosphorus flame retardants and plasticizers in breast milk from the United States[J]. Environmental Science & Technology Letters, 2019, 6(9): 525-531. [3] XU L, ZHANG B, HU Q P, et al. Occurrence and spatio-seasonal distribution of organophosphate tri- and di-esters in surface water from Dongting Lake and their potential biological risk[J]. Environmental Pollution, 2021, 282: 117031. doi: 10.1016/j.envpol.2021.117031 [4] FERNÁNDEZ-ARRIBAS J, MORENO T, ELJARRAT E. Human exposure to organophosphate esters in water and packed beverages[J]. Environment International, 2023, 175: 107936. doi: 10.1016/j.envint.2023.107936 [5] CHI Q, ZHANG W X, WANG L, et al. Evaluation of structurally different brominated flame retardants interacting with the transthyretin and their toxicity on HepG2 cells[J]. Chemosphere, 2020, 246: 125749. doi: 10.1016/j.chemosphere.2019.125749 [6] XU Q L, WU D, DANG Y, et al. Reproduction impairment and endocrine disruption in adult zebrafish (Danio rerio) after waterborne exposure to TBOEP[J]. Aquatic Toxicology, 2017, 182: 163-171. doi: 10.1016/j.aquatox.2016.11.019 [7] ZHANG Q, WANG J H, ZHU J Q, et al. Potential glucocorticoid and mineralocorticoid effects of nine organophosphate flame retardants[J]. Environmental Science & Technology, 2017, 51(10): 5803-5810. [8] ZHONG W J, CUI Y N, LI R X, et al. Distribution and sources of ordinary monomeric and emerging oligomeric organophosphorus flame retardants in Haihe Basin, China[J]. Science of the Total Environment, 2021, 785: 147274. doi: 10.1016/j.scitotenv.2021.147274 [9] NANTABA F, PALM W U, WASSWA J, et al. Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda[J]. Chemosphere, 2021, 262: 127716. doi: 10.1016/j.chemosphere.2020.127716 [10] SU G Y, LETCHER R J, YU H X. Organophosphate flame retardants and plasticizers in aqueous solution: PH-dependent hydrolysis, kinetics, and pathways[J]. Environmental Science & Technology, 2016, 50(15): 8103-8111. [11] LI W H, WANG Y, KANNAN K. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States[J]. Environment International, 2019, 131: 105054. doi: 10.1016/j.envint.2019.105054 [12] WANG S, QIAN J S, ZHANG B L, et al. Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal wastewater treatment plants across China[J]. Environmental Science & Technology, 2023, 57(5): 1907-1918. [13] CHOO G, OH J E. Seasonal occurrence and removal of organophosphate esters in conventional and advanced drinking water treatment plants[J]. Water Research, 2020, 186: 116359. doi: 10.1016/j.watres.2020.116359 [14] ZHANG Y T, CHENG X Y, CHEN X X, et al. Interannual variation and machine learning simulation of organophosphate esters in Taihu Lake[J]. Journal of Hazardous Materials, 2024, 461: 132654. doi: 10.1016/j.jhazmat.2023.132654 [15] LI W T, YUAN Y, WANG S L, et al. Occurrence, spatiotemporal variation, and ecological risks of organophosphate esters in the water and sediment of the middle and lower streams of the Yellow River and its important tributaries[J]. Journal of Hazardous Materials, 2023, 443: 130153. doi: 10.1016/j.jhazmat.2022.130153 [16] YE L J, MENG W K, HUANG J N, et al. Establishment of a target, suspect, and functional group-dependent screening strategy for organophosphate esters (OPEs): “into the unknown” of OPEs in the sediment of Taihu Lake, China[J]. Environmental Science & Technology, 2021, 55(9): 5836-5847. [17] ZHANG S W, YANG C, LIU M Y, et al. Occurrence of organophosphate esters in surface water and sediment in drinking water source of Xiangjiang River, China[J]. Science of the Total Environment, 2021, 781: 146734. doi: 10.1016/j.scitotenv.2021.146734 [18] LV J P, GUO C S, LUO Y, et al. Spatial distribution, receptor modelling and risk assessment of organophosphate esters in surface water from the largest freshwater lake in China[J]. Ecotoxicology and Environmental Safety, 2022, 238: 113618. doi: 10.1016/j.ecoenv.2022.113618 [19] LIU Y H, SONG N H, GUO R X, et al. Occurrence and partitioning behavior of organophosphate esters in surface water and sediment of a shallow Chinese freshwater lake (Taihu Lake): Implication for eco-toxicity risk[J]. Chemosphere, 2018, 202: 255-263. doi: 10.1016/j.chemosphere.2018.03.108 [20] FANG L D, LIU A F, ZHENG M G, et al. Occurrence and distribution of organophosphate flame retardants in seawater and sediment from coastal areas of the East China and Yellow Seas[J]. Environmental Pollution, 2022, 302: 119017. doi: 10.1016/j.envpol.2022.119017 [21] XU L, HU Q P, LIU J, et al. Occurrence of organophosphate esters and their diesters degradation products in industrial wastewater treatment plants in China: Implication for the usage and potential degradation during production processing[J]. Environmental Pollution, 2019, 250: 559-566. doi: 10.1016/j.envpol.2019.04.058 [22] LI Y, YAO C, ZHENG Q X, et al. Occurrence and ecological implications of organophosphate triesters and diester degradation products in wastewater, river water, and tap water[J]. Environmental Pollution, 2020, 259: 113810. doi: 10.1016/j.envpol.2019.113810 [23] KIM U J, KANNAN K. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: Implications for human exposure[J]. Environmental Science & Technology, 2018, 52(10): 5625-5633. [24] ZHU K R, SARVAJAYAKESAVALU S, HAN Y N, et al. Occurrence, distribution and risk assessment of organophosphate esters (OPEs) in water sources from Northeast to Southeast China[J]. Environmental Pollution, 2022, 307: 119461. doi: 10.1016/j.envpol.2022.119461 [25] SHI Y L, GAO L H, LI W H, et al. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China[J]. Environmental Pollution, 2016, 209: 1-10. doi: 10.1016/j.envpol.2015.11.008 [26] van den EEDE N, DIRTU A C, NEELS H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust[J]. Environment International, 2011, 37(2): 454-461. doi: 10.1016/j.envint.2010.11.010 [27] WANG X W, LIU J F, YIN Y G. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J]. Journal of Chromatography A, 2011, 1218(38): 6705-6711. doi: 10.1016/j.chroma.2011.07.067 [28] WANG X L, ZHU L Y, ZHONG W J, et al. Partition and source identification of organophosphate esters in the water and sediment of Taihu Lake, China[J]. Journal of Hazardous Materials, 2018, 360: 43-50. doi: 10.1016/j.jhazmat.2018.07.082 [29] LI S L, WAN Y J, WANG Y, et al. Occurrence, spatial variation, seasonal difference, and ecological risk assessment of organophosphate esters in the Yangtze River, China: From the upper to lower reaches[J]. Science of the Total Environment, 2022, 851: 158021. doi: 10.1016/j.scitotenv.2022.158021 [30] LI J F, HE J H, LI Y N, et al. Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on USEPA oral reference dose (RfD) and oral cancer slope factor (SFO)[J]. Water Research, 2019, 154: 84-93. doi: 10.1016/j.watres.2019.01.035 [31] 赵江陆, 路海健, 吕佳佩, 等. 中国典型流域有机磷酸酯的污染特征与风险评估[J]. 环境科学, 2023, 44(12): 6700-6709. ZHAO J L, LU H J, LÜ J P, et al. Pollution level and risk assessment of OPEs in typical river basins of China[J]. Environmental Science, 2023, 44(12): 6700-6709 (in Chinese).
[32] LI S H, ZHU F F, ZHANG D R, et al. Seasonal concentration variation and potential influencing factors of organophosphorus flame retardants in a wastewater treatment plant[J]. Environmental Research, 2021, 199: 111318. doi: 10.1016/j.envres.2021.111318 [33] REGNERY J, PÜTTMANN W. Organophosphorus flame retardants and plasticizers in rain and snow from middle Germany[J]. CLEAN – Soil, Air, Water, 2009, 37(4/5): 334-342. [34] ZHANG B, XU L, HU Q P, et al. Occurrence, spatiotemporal distribution and potential ecological risks of antibiotics in Dongting Lake, China[J]. Environmental Monitoring and Assessment, 2020, 192(12): 804. doi: 10.1007/s10661-020-08761-w [35] CHEN M H, MA W L. A review on the occurrence of organophosphate flame retardants in the aquatic environment in China and implications for risk assessment[J]. Science of the Total Environment, 2021, 783: 147064. doi: 10.1016/j.scitotenv.2021.147064 [36] KIM U J, OH J K, KANNAN K. Occurrence, removal, and environmental emission of organophosphate flame retardants/plasticizers in a wastewater treatment plant in New York State[J]. Environmental Science & Technology, 2017, 51(14): 7872-7880. [37] LI L W, CHEN R C, WANG L, et al. Discovery of three organothiophosphate esters in river water using high-resolution mass spectrometry[J]. Environmental Science & Technology, 2023, 57(18): 7254-7262. [38] HOU R, XU Y P, WANG Z J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research[J]. Chemosphere, 2016, 153: 78-90. doi: 10.1016/j.chemosphere.2016.03.003 [39] SHI Y F, ZHANG Y, DU Y M, et al. Occurrence, composition and biological risk of organophosphate esters (OPEs) in water of the Pearl River Estuary, South China[J]. Environmental Science and Pollution Research International, 2020, 27(13): 14852-14862. doi: 10.1007/s11356-020-08001-1 [40] LEE S, JEONG W, KANNAN K, et al. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea[J]. Water Research, 2016, 103: 182-188. doi: 10.1016/j.watres.2016.07.034