-
工业进程快速发展的同时也带来了许多环境问题,以水体污染最为突出,造成生态环境紊乱并威胁人类健康[1 − 3]. 磷酸氯喹通常用于在治疗和预防疟疾方面作为仿制药,在治疗阿米巴病和类风湿性关节炎方面作为抗炎剂. 作为一种可能治疗由严重急性呼吸系统综合症冠状病毒引起的冠状病毒病的方法而受到越来越多的关注. 具有持久性和生物累积性的磷酸氯喹作为抗病毒和抗菌药物,在自然界中难以降解,可能对生物体和环境产生潜在威胁[4]. 利用绿色经济的新型能源转换技术已经成为各领域的研究热点,其中光催化技术由于其低能耗、无污染等先天优势,被认为是解决环境问题与能源危机的重要工具而受到广泛关注[5 − 7]. 但受到材料高成本限制,研究者期待获得高效率、低成本的光催化剂,因此能否制备出高效稳定且低成本的光催化材料成为该技术的关键因素[8]. 近年来,三氧化钨(WO3)因其优异的氧化和可见光响应能力而备受关注,为了追求更高的空穴利用率,研究者构建出大量WO3基催化剂[9 − 10]. 如Shi等[11]研究发现,通过水热法可以制备N掺杂石墨烯基CuO/WO3/Cu光催化剂,多相材料的复合为空穴和电子的分离和转移提供了途径,从而有效提高了光催化性能. 实验证实,复合光催化剂可以有效降解水中结晶紫(CV)、甲基橙(MO)、 罗丹明B(RhB)和亚甲基蓝(MB)等多种污染物. Zhu等[12]先利用水热法合成WO3纳米板,再将Ag纳米粒子通过还原法负载于WO3纳米板表面,形成WO3/Ag催化剂. 作为电子俘获中心的Ag纳米粒子可以促进电荷分离,此外,在可见光照射下增强的抗菌活性可以归因于Ag粒子的抑菌作用和WO3/Ag复合材料的光催化抗菌活性,因此对处理磺胺类抗生素(SAs)和病原体污染废水具有优越性.
在众多光催化剂中,BiOBr凭借独特的晶体结构和合适的带隙,可以有效吸附化合物并促进光生载流子分离,因此被广泛应用到各个领域[13 − 15]. 例如Sabit等[16]通过简单的水热和共沉淀法制备了新型磁性BiOBr/ZnFe2O4/CuO光催化剂,其构成的三元异质结构不仅促进电荷解离,而且会产生大量具有氧化还原的活性物质. Fu等[17]成功制备了具有氧空位的Ag2WO4/BiOBr复合材料,其界面可以有效促进电荷转移,同时表现出较高的稳定性以及可回收利用型性.
由于WO3和BiOBr具有合适的能带结构,本研究通过水热法将WO3与BiOBr进行复合,得到了一系列不同摩尔比的WO3/BiOBr光催化剂. 选择磷酸氯喹为目标污染物以期实现WO3基光催化材料在实际水净化方面的应用.
WO3/BiOBr复合材料对磷酸氯喹的光催化降解
WO3/BiOBr composites on photocatalytic degradation of chloroquine phosphate
-
摘要: 水中有机污染物的持久性积累对人类用水安全造成威胁,用常规的方法很难降解,其中磷酸氯喹作为近年来新兴的污染物,伴随大规模应用,不可避免地释放到地表水以及在生物体内聚集. 光催化技术是处理废水的一种绿色经济方法,其中设计高效催化性能的催化剂是该技术走向实践的关键. 本文通过两步水热法将WO3与BiOBr进行复合,利用多种表征手段对材料的微观形貌和结构特征进行表征,将纯相WO3、BiOBr以及不同摩尔比的WO3/BiOBr在可见光下进行了水中磷酸氯喹的降解,结果显示WO3/BiOBr复合材料催化活性优于WO3和BiOBr,可以高效降解磷酸氯喹,反应60 min后,催化剂对20 mg·L−1磷酸氯喹的降解率可达到92.6%. 材料的复合将显著提高光电流响应以及电子迁移率,同时在反应过程中能保持良好的结构和循环稳定性. 为构建新的复合光催化剂以及环境治理提供新思路.Abstract: As an effective drug for the treatment of novel coronavirus pneumonia, chloroquine phosphate is widely used in clinic. With its excessive use and arbitrary discharge, the water environment is seriously polluted. Photocatalytic technology is a green and economical method for wastewater treatment, and the design of catalysts with high catalytic performance is the key to the practice of this technology. In this paper, WO3 and BiOBr were composited by two-step hydrothermal method, and the microstructure and structural characteristics of the materials were characterized by various characterization methods. Pure WO3, BiOBr and a series of WO3/BiOBr with different molar ratios were used to degrade chloroquine phosphate in water under visible light. The results show that the catalytic activity of WO3/BiOBr composite is better than that of WO3 and BiOBr, and it can efficiently degrade chloroquine phosphate. Among them, WB-1.0 is the most prominent, and after 60 min of reaction. The degradation rate of chloroquine phosphate reached 92.6%. The composite material will significantly improve the photocurrent response and electron mobility, while maintaining good structure and cycle stability during the reaction. This work will provide new ideas for the construction of new composite photocatalysts and environmental governance.
-
Key words:
- WO3 /
- BiOBr /
- composite materials /
- photocatalysis /
- chloroquine phosphate.
-
表 1 催化剂比表面积、平均孔径以及孔体积
Table 1. Specific surface area, average pore size and pore volume of catalyst
催化剂
Catalyst比表面积/(m2·g−1)
SBET平均孔径/nm
Pore size孔体积/(cm3·g−1)
Pore volumeBiOBr 23.47 7.7935 0.096333 WO3 29.68 8.6813 0.107933 WB-1.0 37.31 10.9311 0.135055 -
[1] MENG X R, YANG Y Z, ZHANG L P, et al. Preparation and visible light catalytic degradation of magnetically recyclable ZnFe2O4/BiOBr flower-like microspheres[J]. Journal of Alloys and Compounds, 2023, 954: 169981. doi: 10.1016/j.jallcom.2023.169981 [2] 赵艳利, 潘宝, 秦佳妮, 等. O-ZnIn2S4/BP光催化剂的制备及降解四环素研究[J]. 环境化学, 2023, 42(6): 2107-2116. ZHAO Y L, PAN B, QIN J N, et al. Preparation of O- ZnIn2S4/BP photocatalyst and study on its degradation of tetracycline[J]. Environmental Chemistry, 2023, 42(6): 2107-2116(in Chinese).
[3] JABBAR Z H, GRAIMED B, ALSUNBULI M M, et al. Developing a magnetic bismuth-based quaternary semiconductor boosted by plasmonic action for photocatalytic detoxification of Cr(VI) and norfloxacin antibiotic under simulated solar irradiation: Synergistic work and radical mechanism[J]. Journal of Alloys and Compounds, 2023, 958: 170521. doi: 10.1016/j.jallcom.2023.170521 [4] SUN Q Y, FAN Y J, YANG J, et al. Role of trace TEMPO as electron shuttle in enhancing chloroquine phosphate elimination in UV-LED-driven persulfate activation process[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108641. doi: 10.1016/j.jece.2022.108641 [5] SHAHID M Z, CHEN Z H, MEHMOOD R, et al. The synergy of active sites induced by surface pits in BiOCl nanoplates for efficient CO2 photoreduction[J]. Materials Today Energy, 2023, 34: 101303. doi: 10.1016/j.mtener.2023.101303 [6] HAN Z F, ZHONG D J, XU Y L, et al. MIL-53(Fe)@BiOBr/TCN/Ti photoanode assembled visible light responsive photocatalytic fuel cell to enhance rhodamine B degradation and electricity generation[J]. Optical Materials, 2023, 139: 113739. doi: 10.1016/j.optmat.2023.113739 [7] MURR C G, KOZLINSKEI L L, GRZEBIELUCKA E C, et al. Foamed glass functionalized with iron compounds: A strategic material for heterogeneous photocatalysis[J]. Materials Chemistry and Physics, 2023, 304: 127880. doi: 10.1016/j.matchemphys.2023.127880 [8] 郭盛祺, 马同宇, 杨波, 等. 机械混合法制备TiO2/g-C3N4复合材料及其光催化降解双酚A的性能[J]. 环境化学, 2022, 41(4): 1425-1434. doi: 10.7524/j.issn.0254-6108.2020121201 GUO S Q, MA T Y, YANG B, et al. Preparation of TiO2/g-C3N4 composite material by mechanical mixing method and study on its photocatalytic degradation performance of bisphenol A[J]. Environmental Chemistry, 2022, 41(4): 1425-1434(in Chinese). doi: 10.7524/j.issn.0254-6108.2020121201
[9] ALZAHRANI K A, ISMAIL A A. Highly efficient AgVO3/WO3 photocatalyst n-n heterojunction toward visible-light induced degradation antibiotic[J]. Journal of Industrial and Engineering Chemistry, 2023, 124: 270-278. doi: 10.1016/j.jiec.2023.04.016 [10] NAAZ F, ALSHEHRI S M, MAO Y B, et al. Unraveling the chemoselective catalytic, photocatalytic and electrocatalytic applications of copper supported WO3 nanosheets[J]. Catalysis Communications, 2023, 178: 106678. doi: 10.1016/j.catcom.2023.106678 [11] SHI R, ZHANG Z J, LUO F. N-doped graphene-based CuO/WO3/Cu composite material with performances of catalytic decomposition 4-nitrophenol and photocatalytic degradation of organic dyes[J]. Inorganic Chemistry Communications, 2020, 121: 108246. doi: 10.1016/j.inoche.2020.108246 [12] ZHU W Y, LIU J C, YU S Y, et al. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation[J]. Journal of Hazardous Materials, 2016, 318: 407-416. doi: 10.1016/j.jhazmat.2016.06.066 [13] GUAN X S, ZHANG X C, ZHANG C M, et al. Original self-assembled S-scheme BiOBr-(001)/Bi2SiO5/Bi heterojunction photocatalyst with rich oxygen vacancy for boosting CO2 reduction performance[J]. Journal of Colloid Interface Science, 2023, 644: 426-436. doi: 10.1016/j.jcis.2023.04.097 [14] EIMETWALLY A E, SAYED M S, SHIM J J, et al. Plasmon-enhanced photocatalytic oxidation of benzyl alcohol to benzaldehyde using BiVO4/BiOBr/Au nanosheets[J]. ACS Applied Nano Materials, 2023, 6(7): 5909-5917. doi: 10.1021/acsanm.3c00293 [15] ZHANG J Y, YANG Y C, SUN Z C, et al. Ag@BiOBr/PVDF photocatalytic membrane for remarkable BSA anti-fouling performance and insight of mechanism[J]. Journal of Membrane Science, 2023, 677: 121611. doi: 10.1016/j.memsci.2023.121611 [16] SABIT D A, EBRAHIM S E. Fabrication of magnetic BiOBr/ZnFe2O4/CuO heterojunction for improving the photocatalytic destruction of malachite green dye under LED irradiation: Dual S-scheme mechanism[J]. Materials Science in Semiconductor Processing, 2023, 163: 107559. doi: 10.1016/j.mssp.2023.107559 [17] FU S, DU Y Q, BIE J H, et al. Facile fabrication of Z-scheme Ag2WO4/BiOBr heterostructure with oxygen vacancies for improved visible-light photocatalytic performance[J]. Journal of Science:Advanced Materials and Devices, 2023, 8(2): 100561. doi: 10.1016/j.jsamd.2023.100561 [18] Li J J, Zhang M, Weng B, Chen X, Chen J, Jia H P. Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance[J]. Applied Surface Science, 2020, 507: 145133. doi: 10.1016/j.apsusc.2019.145133 [19] ANDRADE A O C, Da SILVEIRA LACERDA L H, LAGE M M J, et al. Enhanced photocatalytic activity of BiOBr/ZnWO4 heterojunction: A combined experimental and DFT-based theoretical approach[J]. Optical Materials, 2023, 138: 113701. doi: 10.1016/j.optmat.2023.113701 [20] KUANG X, FU M, KANG H, et al. A BiOIO3/BiOBr n-n heterojunction was constructed to enhance the photocatalytic degradation of TC[J]. Optical Materials, 2023, 138: 113690. doi: 10.1016/j.optmat.2023.113690 [21] LI Z, WANG R, WEN M, et al. WO3/Cd0.5Zn0.5S heterojunction for highly efficient visible-light photocatalytic H2 evolution[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111351. doi: 10.1016/j.jpcs.2023.111351 [22] HASSAN A, MUHAMMAD Y, ASABUWA N F , et al. Boosting photocatalytic degradation of estrone hormone by silica-supported g-C3N4/WO3 using response surface methodology coupled with Box-Behnken design[J]. Journal of Photochemistry & Photobiology, A: Chemistry, 2023, 441: 114733. [23] YASEEN M, JIANG H P, LI J H, et al. Synergistic effect of Z-scheme and oxygen vacancy of CeO2/WO3 heterojunction for enhanced CO2 reduction activity[J]. Applied Surface Science, 2023, 631: 157360. doi: 10.1016/j.apsusc.2023.157360 [24] XU H, YANG J, LI Y, et al. Fabrication of Bi2O3 QDs decorated TiO2/BiOBr dual Z-scheme photocatalysts for efficient degradation of gaseous toluene under visible-light[J]. Journal of Alloys and Compounds, 2023, 950: 169959. doi: 10.1016/j.jallcom.2023.169959 [25] 王旭, 陈熙, 徐新阳, 等. CQDs/TiO2复合材料的制备及光催化降解抗生素[J]. 环境化学, 2022, 41(12): 3876-3885. WANG X, CHEN X, XU X Y, et al. Preparation of CQDs/TiO2 composites and photocatalytic degradation of antibiotic wastewater[J]. Environmental Chemistry, 2022, 41(12): 3876-3885(in Chinese).
[26] LIU Y, CAO S, WU H, et al. Synthesis of hollow spherical WO3 powder by spray solution combustion and its photocatalytic properties[J]. Ceramics International, 2023, 49: 21175-21184. doi: 10.1016/j.ceramint.2023.03.248 [27] ZHANG Q R, GUAN X S, WANG X K, et al. In-situ electrochemical-ion-exchange synthesis of S-scheme 1D/2D BiPO4/BiOBr heterojunction film from Bi plate with highly efficient photocatalytic CO2 reduction activity[J]. Catalysis Communications, 2023, 177: 106664. doi: 10.1016/j.catcom.2023.106664 [28] WANG K R, LUO L, WANG C, et al. Photocatalytic methane activation by dual reaction sites co-modified WO3[J]. Chinese Journal of Catalysis, 2023, 46: 103-112. doi: 10.1016/S1872-2067(22)64169-X [29] DAI Y X, LIU W R, FU X Y, et al. Fabrication of a novel double Z-scheme WO3/Cd0.97Zn0.03S/CoSx photocatalyst for facilitating photocatalytic hydrogen production[J]. Materials Letters, 2023, 338: 134072. doi: 10.1016/j.matlet.2023.134072 [30] LIU Y H, LI Y Y, LIU X G, et al. In situ construction of rich oxygen vacancy Bi/Bi3TaO7 heterojunction photocatalysts[J]. International Journal of Hydrogen Energy, 2023. [31] HARIKUMAR B, OKLA M K, KOKILAVANI S, et al. Insights into oxygen defect enriched and non-metal dopant co modulated Fe3O4 nanospheres embedded WO3 nanorods for ameliorated photodegradation of doxycycline, Cr(VI) reduction and its genotoxicity[J]. Journal of Cleaner Production, 2023, 398: 136549. doi: 10.1016/j.jclepro.2023.136549