[1] |
MENG X R, YANG Y Z, ZHANG L P, et al. Preparation and visible light catalytic degradation of magnetically recyclable ZnFe2O4/BiOBr flower-like microspheres[J]. Journal of Alloys and Compounds, 2023, 954: 169981. doi: 10.1016/j.jallcom.2023.169981
|
[2] |
赵艳利, 潘宝, 秦佳妮, 等. O-ZnIn2S4/BP光催化剂的制备及降解四环素研究[J]. 环境化学, 2023, 42(6): 2107-2116.
ZHAO Y L, PAN B, QIN J N, et al. Preparation of O- ZnIn2S4/BP photocatalyst and study on its degradation of tetracycline[J]. Environmental Chemistry, 2023, 42(6): 2107-2116(in Chinese).
|
[3] |
JABBAR Z H, GRAIMED B, ALSUNBULI M M, et al. Developing a magnetic bismuth-based quaternary semiconductor boosted by plasmonic action for photocatalytic detoxification of Cr(VI) and norfloxacin antibiotic under simulated solar irradiation: Synergistic work and radical mechanism[J]. Journal of Alloys and Compounds, 2023, 958: 170521. doi: 10.1016/j.jallcom.2023.170521
|
[4] |
SUN Q Y, FAN Y J, YANG J, et al. Role of trace TEMPO as electron shuttle in enhancing chloroquine phosphate elimination in UV-LED-driven persulfate activation process[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108641. doi: 10.1016/j.jece.2022.108641
|
[5] |
SHAHID M Z, CHEN Z H, MEHMOOD R, et al. The synergy of active sites induced by surface pits in BiOCl nanoplates for efficient CO2 photoreduction[J]. Materials Today Energy, 2023, 34: 101303. doi: 10.1016/j.mtener.2023.101303
|
[6] |
HAN Z F, ZHONG D J, XU Y L, et al. MIL-53(Fe)@BiOBr/TCN/Ti photoanode assembled visible light responsive photocatalytic fuel cell to enhance rhodamine B degradation and electricity generation[J]. Optical Materials, 2023, 139: 113739. doi: 10.1016/j.optmat.2023.113739
|
[7] |
MURR C G, KOZLINSKEI L L, GRZEBIELUCKA E C, et al. Foamed glass functionalized with iron compounds: A strategic material for heterogeneous photocatalysis[J]. Materials Chemistry and Physics, 2023, 304: 127880. doi: 10.1016/j.matchemphys.2023.127880
|
[8] |
郭盛祺, 马同宇, 杨波, 等. 机械混合法制备TiO2/g-C3N4复合材料及其光催化降解双酚A的性能[J]. 环境化学, 2022, 41(4): 1425-1434. doi: 10.7524/j.issn.0254-6108.2020121201
GUO S Q, MA T Y, YANG B, et al. Preparation of TiO2/g-C3N4 composite material by mechanical mixing method and study on its photocatalytic degradation performance of bisphenol A[J]. Environmental Chemistry, 2022, 41(4): 1425-1434(in Chinese). doi: 10.7524/j.issn.0254-6108.2020121201
|
[9] |
ALZAHRANI K A, ISMAIL A A. Highly efficient AgVO3/WO3 photocatalyst n-n heterojunction toward visible-light induced degradation antibiotic[J]. Journal of Industrial and Engineering Chemistry, 2023, 124: 270-278. doi: 10.1016/j.jiec.2023.04.016
|
[10] |
NAAZ F, ALSHEHRI S M, MAO Y B, et al. Unraveling the chemoselective catalytic, photocatalytic and electrocatalytic applications of copper supported WO3 nanosheets[J]. Catalysis Communications, 2023, 178: 106678. doi: 10.1016/j.catcom.2023.106678
|
[11] |
SHI R, ZHANG Z J, LUO F. N-doped graphene-based CuO/WO3/Cu composite material with performances of catalytic decomposition 4-nitrophenol and photocatalytic degradation of organic dyes[J]. Inorganic Chemistry Communications, 2020, 121: 108246. doi: 10.1016/j.inoche.2020.108246
|
[12] |
ZHU W Y, LIU J C, YU S Y, et al. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation[J]. Journal of Hazardous Materials, 2016, 318: 407-416. doi: 10.1016/j.jhazmat.2016.06.066
|
[13] |
GUAN X S, ZHANG X C, ZHANG C M, et al. Original self-assembled S-scheme BiOBr-(001)/Bi2SiO5/Bi heterojunction photocatalyst with rich oxygen vacancy for boosting CO2 reduction performance[J]. Journal of Colloid Interface Science, 2023, 644: 426-436. doi: 10.1016/j.jcis.2023.04.097
|
[14] |
EIMETWALLY A E, SAYED M S, SHIM J J, et al. Plasmon-enhanced photocatalytic oxidation of benzyl alcohol to benzaldehyde using BiVO4/BiOBr/Au nanosheets[J]. ACS Applied Nano Materials, 2023, 6(7): 5909-5917. doi: 10.1021/acsanm.3c00293
|
[15] |
ZHANG J Y, YANG Y C, SUN Z C, et al. Ag@BiOBr/PVDF photocatalytic membrane for remarkable BSA anti-fouling performance and insight of mechanism[J]. Journal of Membrane Science, 2023, 677: 121611. doi: 10.1016/j.memsci.2023.121611
|
[16] |
SABIT D A, EBRAHIM S E. Fabrication of magnetic BiOBr/ZnFe2O4/CuO heterojunction for improving the photocatalytic destruction of malachite green dye under LED irradiation: Dual S-scheme mechanism[J]. Materials Science in Semiconductor Processing, 2023, 163: 107559. doi: 10.1016/j.mssp.2023.107559
|
[17] |
FU S, DU Y Q, BIE J H, et al. Facile fabrication of Z-scheme Ag2WO4/BiOBr heterostructure with oxygen vacancies for improved visible-light photocatalytic performance[J]. Journal of Science:Advanced Materials and Devices, 2023, 8(2): 100561. doi: 10.1016/j.jsamd.2023.100561
|
[18] |
Li J J, Zhang M, Weng B, Chen X, Chen J, Jia H P. Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance[J]. Applied Surface Science, 2020, 507: 145133. doi: 10.1016/j.apsusc.2019.145133
|
[19] |
ANDRADE A O C, Da SILVEIRA LACERDA L H, LAGE M M J, et al. Enhanced photocatalytic activity of BiOBr/ZnWO4 heterojunction: A combined experimental and DFT-based theoretical approach[J]. Optical Materials, 2023, 138: 113701. doi: 10.1016/j.optmat.2023.113701
|
[20] |
KUANG X, FU M, KANG H, et al. A BiOIO3/BiOBr n-n heterojunction was constructed to enhance the photocatalytic degradation of TC[J]. Optical Materials, 2023, 138: 113690. doi: 10.1016/j.optmat.2023.113690
|
[21] |
LI Z, WANG R, WEN M, et al. WO3/Cd0.5Zn0.5S heterojunction for highly efficient visible-light photocatalytic H2 evolution[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111351. doi: 10.1016/j.jpcs.2023.111351
|
[22] |
HASSAN A, MUHAMMAD Y, ASABUWA N F , et al. Boosting photocatalytic degradation of estrone hormone by silica-supported g-C3N4/WO3 using response surface methodology coupled with Box-Behnken design[J]. Journal of Photochemistry & Photobiology, A: Chemistry, 2023, 441: 114733.
|
[23] |
YASEEN M, JIANG H P, LI J H, et al. Synergistic effect of Z-scheme and oxygen vacancy of CeO2/WO3 heterojunction for enhanced CO2 reduction activity[J]. Applied Surface Science, 2023, 631: 157360. doi: 10.1016/j.apsusc.2023.157360
|
[24] |
XU H, YANG J, LI Y, et al. Fabrication of Bi2O3 QDs decorated TiO2/BiOBr dual Z-scheme photocatalysts for efficient degradation of gaseous toluene under visible-light[J]. Journal of Alloys and Compounds, 2023, 950: 169959. doi: 10.1016/j.jallcom.2023.169959
|
[25] |
王旭, 陈熙, 徐新阳, 等. CQDs/TiO2复合材料的制备及光催化降解抗生素[J]. 环境化学, 2022, 41(12): 3876-3885.
WANG X, CHEN X, XU X Y, et al. Preparation of CQDs/TiO2 composites and photocatalytic degradation of antibiotic wastewater[J]. Environmental Chemistry, 2022, 41(12): 3876-3885(in Chinese).
|
[26] |
LIU Y, CAO S, WU H, et al. Synthesis of hollow spherical WO3 powder by spray solution combustion and its photocatalytic properties[J]. Ceramics International, 2023, 49: 21175-21184. doi: 10.1016/j.ceramint.2023.03.248
|
[27] |
ZHANG Q R, GUAN X S, WANG X K, et al. In-situ electrochemical-ion-exchange synthesis of S-scheme 1D/2D BiPO4/BiOBr heterojunction film from Bi plate with highly efficient photocatalytic CO2 reduction activity[J]. Catalysis Communications, 2023, 177: 106664. doi: 10.1016/j.catcom.2023.106664
|
[28] |
WANG K R, LUO L, WANG C, et al. Photocatalytic methane activation by dual reaction sites co-modified WO3[J]. Chinese Journal of Catalysis, 2023, 46: 103-112. doi: 10.1016/S1872-2067(22)64169-X
|
[29] |
DAI Y X, LIU W R, FU X Y, et al. Fabrication of a novel double Z-scheme WO3/Cd0.97Zn0.03S/CoSx photocatalyst for facilitating photocatalytic hydrogen production[J]. Materials Letters, 2023, 338: 134072. doi: 10.1016/j.matlet.2023.134072
|
[30] |
LIU Y H, LI Y Y, LIU X G, et al. In situ construction of rich oxygen vacancy Bi/Bi3TaO7 heterojunction photocatalysts[J]. International Journal of Hydrogen Energy, 2023.
|
[31] |
HARIKUMAR B, OKLA M K, KOKILAVANI S, et al. Insights into oxygen defect enriched and non-metal dopant co modulated Fe3O4 nanospheres embedded WO3 nanorods for ameliorated photodegradation of doxycycline, Cr(VI) reduction and its genotoxicity[J]. Journal of Cleaner Production, 2023, 398: 136549. doi: 10.1016/j.jclepro.2023.136549
|