-
氧化多环芳烃(oxygenated polycyclic aromatic hydrocarbons,OPAHs)是芳族苯环上具有至少一个羰基氧(C=O)的多环芳烃(PAHs)衍生物,其排放源与PAHs相似(即燃烧源与尾气排放源),也可由PAHs经光或化学氧化和生物转化产生[1]. OPAHs具有环境持久性、流动性和强毒性等特点[2],可长期存留于大气[3]、土壤[4]、水体[1]及其沉积物[5]等环境介质中,并通过多种途径(如呼吸吸入、直接接触和饮食摄入)进入生物体[6],进而对生态功能和生物体健康造成潜在影响.
已有研究发现,农业用地、工业用地和林业用地土壤中OPAHs有不同程度的残留量,且更易进入植物根部并富集,部分可向上迁移至茎叶部分,进而可影响植物形态、生长指标(如根芽长)、生理生化指标(如过氧化物酶含量)和生理过程(如线粒体损伤)[7 − 8]. 中国南方某典型城市表层土壤中OPAHs残留量远高于杂环多环芳烃,占比为16.8%[9]. 此外,菲等多环芳烃可诱发氧化应激以加快植物细胞膜脂类氧化进程,亦可导致光合作用和蛋白质生物合成所需基因下调[10],最终诱导植物细胞发生程序性凋亡、细胞器损伤或造成植物坏死病变[11]. Yun等[12]发现,硝基多环芳烃可影响种子萌发和幼苗生长以及导致根尖细胞染色体异常. 最近一项研究表明,OPAHs(如胡桃醌)可抑制玉米与小麦种子萌发生长、促进氧化应激且诱导过氧化物酶基因表达改变[13]. 目前OPAHs植物毒性及其机制的研究较少[2].
本研究以大麦为模式植物,考察不同浓度OPAHs处理下大麦幼苗生长状况和生理生化指标变化,并探讨OPAHs胁迫下抗氧化生理响应,旨在明确OPAHs致大麦毒性效应及其机制,为生态安全评估和环境管理政策提供科学依据.
氧化多环芳烃对大麦幼苗生长及抗氧化生理响应的影响
Effects of oxygenated polycyclic aromatic hydrocarbons on growth and antioxidant physiological response of barley seedling
-
摘要: 近年来,多环芳烃衍生物—氧化多环芳烃(OPAHs)因其较高的环境检出和生态风险而备受关注. 为明确植物幼苗对OPAHs累积的响应,本研究采用水培实验和植物生理学手段探讨不同浓度OPAHs(1、3、10 μmol·L−1)胁迫下大麦生长发育、光合作用和氧化损伤及其抗氧化防御能力. 结果表明,OPAHs降低大麦种子萌发率、根芽伸长率和根芽干鲜重等指标,增加活性氧、过氧化氢水平以及抗氧化物质含量,但对叶绿素等光合色素无显著影响. 相关性分析显示,超氧化物歧化酶、还原型谷胱甘肽和类胡萝卜素参与叶片抑制氧化损伤过程,其中超氧化物歧化酶在1,2-苯并奎宁酮胁迫下的抗氧化防御中起到关键作用.Abstract: Recently, polycyclic aromatic hydrocarbons derivatives—oxygenated polycyclic aromatic hydrocarbons (OPAHs) are widely noticed due to their high environment detection and ecological risk. To clarify the reponse of OPAHs accumulation in plant seedlings, this study investigated growth, photosynthesis, oxidative damages and antioxidant defense in barley under OPAHs stresses at different concentrations(1, 3, 10 µmol·L−1) via hydroponic experiments and plant physiological methods. The results showed that OPAHs inhibited index, such as barley seed germination, root elongation, bud elongation, shoot and root biomass, elevated the levels of ROS and H2O2, and induced antioxidant accumulation, but not significantly affecting photosynthetic pigment content such as chlorophylls. The correlation analysis further indicated superoxide dismutase, glutathione and carotenoid were involved in the inhibition of oxidative damages in barley leaves. Among them, superoxide dismutase was essential for antioxidant defense under 1,2-benzan-thraquinone stress.
-
-
[1] QIAO M, QI W X, LIU H J, et al. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources[J]. Environment International, 2022, 163: 107232. doi: 10.1016/j.envint.2022.107232 [2] 张玉洁, 云洋. 环境中的氧化多环芳烃综述[J]. 环境化学, 2021, 40(1): 150-163. doi: 10.7524/j.issn.0254-6108.2020022802 ZHANG Y J, YUN Y. Oxygenated polycyclic aromatic hydrocarbons in the environment: A review[J]. Environmental Chemistry, 2021, 40(1): 150-163(in Chinese). doi: 10.7524/j.issn.0254-6108.2020022802
[3] XIA W W, LIANG B, CHEN L, et al. Atmospheric wet and dry depositions of polycyclic aromatic compounds in a megacity of Southwest China[J]. Environmental Research, 2022, 204: 112151. doi: 10.1016/j.envres.2021.112151 [4] CHEN W S, XIAN W X, HE G Y, et al. Occurrence and spatiotemporal distribution of PAHs and OPAHs in urban agricultural soils from Guangzhou City, China[J]. Ecotoxicology and Environmental Safety, 2023, 254: 114767. doi: 10.1016/j.ecoenv.2023.114767 [5] KONG J J, HAN M S, CAO X Y, et al. Sedimentary spatial variation, source identification and ecological risk assessment of parent, nitrated and oxygenated polycyclic aromatic hydrocarbons in a large shallow lake in China[J]. Science of the Total Environment, 2023, 863: 160926. doi: 10.1016/j.scitotenv.2022.160926 [6] 李晨光, 李维霞, 张璟, 等. 人体血浆中多环芳烃及含氧多环芳烃的暴露特征及健康风险评估[J]. 环境化学: 2023, 42(6): 1784-1791. LI C G, LI W X, ZHANG J, et al. Exposure characteristics and health risk assessment of polycyclic aromatic hydrocarbons and oxygenated derivatives in human plasma[J]. Environmental Chemistry 2023, 42(6): 1784-1791(in Chinese).
[7] SHEN Y, LI J F, SHI S N, et al. Application of carotenoid to alleviate the oxidative stress caused by phenanthrene in wheat[J]. Environmental Science and Pollution Research, 2019, 26(4): 3593-3602. doi: 10.1007/s11356-018-3832-y [8] KRZYSZCZAK A, DYBOWSKI M, JOŚKO I, et al. The antioxidant defense responses of Hordeum vulgare L. to polycyclic aromatic hydrocarbons and their derivatives in biochar-amended soil[J]. Environmental Pollution, 2022, 294: 118664. doi: 10.1016/j.envpol.2021.118664 [9] REN K F, WEI Y, LI J H, et al. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated PAHs, azaarenes, and sulfur/oxygen-containing heterocyclic PAHs) in surface soils from a typical city, South China[J]. Chemosphere, 2021, 283: 131190. doi: 10.1016/j.chemosphere.2021.131190 [10] JAJOO A, MEKALA N R, TOMAR R S, et al. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity[J]. Journal of Photochemistry and Photobiology B:Biology, 2014, 137: 151-155. doi: 10.1016/j.jphotobiol.2014.03.011 [11] AHAMMED G J, GAO C J, OGWENO J O, et al. Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L[J]. Ecotoxicology and Environmental Safety, 2012, 80: 28-36. doi: 10.1016/j.ecoenv.2012.02.004 [12] YUN Y, LIANG L Y, WEI Y, et al. Exposure to Nitro-PAHs interfere with germination and early growth of Hordeum vulgare via oxidative stress[J]. Ecotoxicology and Environmental Safety, 2019, 180: 756-761. doi: 10.1016/j.ecoenv.2019.05.032 [13] SYTYKIEWICZ H, KOZAK A, LESZCZYŃSKI B, et al. Transcriptional profiling of catalase genes in juglone-treated seeds of maize (Zea mays L. ) and wheat (Triticum aestivum L. )[J]. Acta Biologica Hungarica, 2018, 69(4): 449-463. doi: 10.1556/018.69.2018.4.7 [14] 周武先, 段媛媛, 卢超, 等. 高效提取3种不同类型植物叶片色素的方法[J]. 西北农业学报, 2019, 28(1): 97-104. doi: 10.7606/j.issn.1004-1389.2019.01.012 ZHOU W X, DUAN Y Y, LU C, et al. Efficient methods for extracting pigments from three different types of plant leaves[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(1): 97-104(in Chinese). doi: 10.7606/j.issn.1004-1389.2019.01.012
[15] 尚誉, 杨丰隆, 董轶茹, 等. 矸石山及其周边村庄土壤浸出液对大麦的毒性作用[J]. 环境科学, 2020, 41(6): 2936-2941. SHANG Y, YANG F L, DONG Y R, et al. Toxicity of soil leachate from coal gangue and its surrounding village of barley(Hordeum vulgare)[J]. Environmental Science, 2020, 41(6): 2936-2941(in Chinese).
[16] ULLAH H, LI X P, PENG L Y, et al. In vivo phytotoxicity, uptake, and translocation of PbS nanoparticles in maize (Zea mays L. ) plants[J]. Science of the Total Environment, 2020, 737: 139558. doi: 10.1016/j.scitotenv.2020.139558 [17] ZHU J H, ZOU Z H, SHEN Y, et al. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene[J]. Environmental Pollution, 2019, 247: 108-117. doi: 10.1016/j.envpol.2019.01.046 [18] WEI H Y, SONG S J, TIAN H L, et al. Effects of phenanthrene on seed germination and some physiological activities of wheat seedling[J]. Comptes Rendus Biologies, 2014, 337(2): 95-100. doi: 10.1016/j.crvi.2013.11.005 [19] ZEZULKA Š, KUMMEROVÁ M, BABULA P, et al. Lemna minor exposed to fluoranthene: Growth, biochemical, physiological and histochemical changes[J]. Aquatic Toxicology, 2013, 140-141: 37-47. doi: 10.1016/j.aquatox.2013.05.011 [20] AHLUWALIA O, SINGH P C, BHATIA R. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria[J]. Resources, Environment and Sustainability, 2021, 5: 100032. doi: 10.1016/j.resenv.2021.100032 [21] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467. [22] SELOTE D S, KHANNA-CHOPRA R. Antioxidant response of wheat roots to drought acclimation[J]. Protoplasma, 2010, 245(1): 153-163. [23] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. doi: 10.1016/j.plaphy.2010.08.016 [24] AHAMMED G J, YUAN H L, OGWENO J O, et al. Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato[J]. Chemosphere, 2012, 86(5): 546-555. doi: 10.1016/j.chemosphere.2011.10.038