-
生活垃圾焚烧、再生有色金属冶炼、铁矿石烧结等典型工业热过程是无意生成持久性有机污染物(unintentionally produced persistent organic pollutants,UPOPs)的重要排放源[1 − 2],如多氯代二苯并-对-二噁英(PCDDs)、多氯代二苯并呋喃(PCDFs)、多氯联苯(PCBs)、多氯萘(PCNs)等. 尽管工艺技术和烟气污染控制设施的完善使得烟气中二噁英的脱除效率达98%以上[3],但由于二噁英的源头生成量大,其排放浓度仍难以达到大气污染物的排放标准[4],由此推测,其他UPOPs的生成量和排放量必然相当可观,因此,从源头控制UPOPs的生成才是其减排的关键. 了解UPOPs的生成机制对于其源头控制至关重要. 研究表明,工业热过程中其他UPOPs与二噁英具有相似的生成机制[5]. 二噁英在燃烧反应中主要通过高温气相合成和低温异相催化合成[6]. 高温气相合成发生的温度范围为500—800 °C,氯源和碳源在气相中合成二噁英,通常气相中生成二噁英需要相关前驱体参与,如氯苯、氯酚等,或者通过其他脂肪烃缩合而成[7 − 8]. 低温异相催化合成发生的温度区间为200—400 °C,包括了前驱体(precursors)生成和从头合成(de novo). 前驱体生成途径是指氯苯、氯酚、多环芳烃等前驱体被吸附在颗粒物表面,然后在过渡金属催化剂的参与下生成二噁英,如图1所示. 从头合成是指碳源在氯源、金属催化剂的参与下生成二噁英. 然而,现有UPOPs生成机制的研究主要是基于稳定中间产物和目标UPOPs的检测,对于自由基中间体的研究非常少.
在热反应中,有机物的生成转化通常是自由基参与的反应[11]. 自由基具有高度活性,存留时间短至10−9 s,常见的瞬时自由基包括氢自由基(·H)、羟基自由基(·OH)、超氧阴离子自由基(·O2―)等[12]. 近年来,有研究者在大气颗粒物中检测到了环境持久性自由基(environmentally persistent free radicals,EPFRs)[13]. 不同于活性强、寿命短的瞬时自由基,环境持久性自由基具有更高的稳定性和持久性,其寿命可达几小时到几个月,甚至几年[14],这是因为有机自由基与金属氧化物之间发生了电子转移,形成了更加稳定的化学结构,能够在环境中长时间存在. 目前,常见的EPFRs主要有苯氧类自由基、半醌类自由基和环戊二烯类自由基等,这些EPFRs普遍稳定存在于土壤、沉积物和大气细颗粒物(PM)等环境介质中[15]. EPFRs通过环境介质进入人体组织后,能够诱发产生活性氧自由基,导致人体细胞被氧化,产生细胞毒素,造成DNA损伤和细胞死亡[16]. 土壤中存在的EPFRs还会抑制农作物的发芽和生长[17]. 因此,EPFRs被认为是一类新环境有害污染物[18]. 除了在环境介质中存在,在工业燃烧产生的飞灰中也能检测到EPFRs[19]. EPFRs容易在燃烧系统和其他热过程的后燃烧区以及烟气冷却区大量生成[20],而这部分也是UPOPs生成的主要区域,由于EPFRs与UPOPs具有相似的生成条件和区域,因此,有研究提出,EPFRs是UPOPs生成的重要自由基中间体[21].
前期研究提出前驱体、金属催化剂、反应气氛、温度等是影响二噁英等UPOPs生成的关键因素. 以二噁英为例,以氯酚或氯苯为前驱体更容易生成PCDDs,而以多环芳烃或焦炭作为前驱体则更容易生成PCDFs[22]. 250—450 °C是二噁英生成的最佳温度,在该温度范围内,随着氧气浓度从0%增加到21%,二噁英的生成量也随之增加,且PCDDs的增量大于PCDFs[23]. 金属氯化物比金属氧化物的催化活性更强,不同金属化合物对氯代多环芳烃生成的促进能力排序为CuCl2 > FeCl3 > FeCl2 > CuO > Fe2O3 > PbCl2 > Blank > ZnCl2 > PbO > ZnO[24]. 而添加一些钙基、氮基和硫基阻滞剂能够抑制二噁英的生成[25 − 26]. 作为UPOPs生成潜在的自由基中间体,目前尚未有研究总结这些因素对EPFRs生成的影响. 本文总结了热反应过程中前驱体、反应气氛、温度、金属催化剂对EPFRs生成的影响,论述了生成二噁英等UPOPs过程中可能存在的持久性自由基转化机制,并结合现有UPOPs的源头阻滞技术对今后UPOPs与EPFRs协同抑制进行了展望.
工业热过程中无意生成持久性有机污染物的自由基转化机制
Free-radical mediated formation mechanisms of unintentionally produced persistent organic pollutants in industrial thermal processes
-
摘要: 掌握无意生成持久性有机污染物(unintentionally produced persistent organic pollutants,UPOPs)的生成机制对于其在典型工业热过程中的源头控制具有重要意义,现有对二噁英等UPOPs生成机制的研究主要是基于反应后稳定化合物和目标同类物分布的检测,缺乏对自由基中间体的研究. 环境持久性自由基(environmentally persistent free radicals,EPFRs)是一类新的环境污染物,其半衰期可达数月,可在环境样品以及二噁英生成过程中检出. 近年来EPFRs被认为是UPOPs生成的重要自由基中间体. 本文对UPOPs生成过程中前驱体种类、金属化合物、温度、反应气氛等对EPFRs生成特性的影响作用进行了综述,分析了前驱体生成UPOPs过程中同种或不同种EPFRs的转化路径. 此外,基于现有UPOPs源头阻滞技术,提出了UPOPs与EPFRs协同控制的潜在方法.Abstract: It is of great significance to master the formation mechanisms of unintentionally produced persistent organic pollutants (UPOPs) for its source control in typical industrial thermal processes. Existing studies on the formation mechanism of UPOPs, e.g. dioxins, are mainly based on the detection of stable compounds and target congeners after reaction, but the detection of free-radical intermediates is lacking. Environmentally persistent free radicals (EPFRs) are a new class of environmental pollutants with a half-life up to several months. They can be detected in environmental samples and dioxin formation processes. EPFRs have been recognized as important free-radical intermediates for UPOPs generation in recent years. In this paper, the critical effects of precursor species, metal compounds, temperature and reaction atmosphere on the formation characteristics of EPFRs are reviewed. The conversion pathways of various EPFRs to UPOPs from different precursors are analyzed. In addition, based on the current UPOPs control technology, a potential method for synergistic control of UPOPs and EPFRs is proposed.
-
表 1 不同工况下、不同前驱体在不同金属氧化物上生成的EPFRs和UPOPs
Table 1. Summary of EPFRs and UPOPs generated from various precursors on different metal oxides under different conditions
前驱体
Precursor反应温度
Temperature反应气氛
Reaction atmosphere金属氧化物
Metal oxideEPFRs类型
Types of EPFRsUPOPs 参考文献
References对苯二酚、邻苯二酚、
苯酚400—800 °C 惰性 CuO 苯氧自由基、半醌自由基、环戊二烯自由基 N.A. [20] 对苯二酚、邻苯二酚、
苯酚、氯酚、一氯苯、
1,2-二氯苯100—400 °C 真空 CuO、Fe2O3、NiO、ZnO 苯氧自由基、半醌自由基 N.A. [29 − 32] 苯 230 °C 真空、惰性 CuxO 苯氧自由基 N.A. [33] 蒽、芘、苯并[a]芘、
9,10-蒽醌、1,4-萘醌、
苯并[g,h,i]苝室温 O3 N.A. 半醌类自由基、碳中心的多环芳烃自由基 N.A. [34] 2,4-二氯-1-萘酚 25—300 °C 空气 CuO、Al2O3、ZnO、NiO 萘氧自由基、萘醌自由基 N.A. [35] 苯酚 室温和250 °C O2 α-Fe2O3 苯氧自由基 N.A. [36] 邻苯二酚 25—327 °C O2 CuO、Fe2O3、CaO 氧中心苯氧自由基、半醌自由基 N.A. [37] 苯酚 250 °C 真空 ZnO、CuO、Fe2O3、TiO2 氧中心和碳中心的苯氧自由基 N.A. [38] 苯酚、邻苯二酚(理论计算) 27—727 °C 真空 Cu和Fe及其氧化物 酚醛类和苯氧自由基 N.A. [39] 苯酚 室温和250 °C 真空 ZnO 苯氧自由基 N.A. [40] 苯酚(理论计算) 27—727 °C 真空 α-Al2O3 苯氧自由基 N.A. [41] 苯酚 232 °C 真空 Al2O3、TiO2 苯氧自由基、半醌自由基 N.A. [42] 一氯苯、苯酚、1,2-二氯苯 230 °C 真空 PbO 苯氧自由基、苯基自由基 N.A. [43] 一氯苯、2-氯酚、
1,2-二氯苯230 °C 真空 CuO 苯氧自由基、半醌自由基 N.A. [44] 2-氯酚 225—500 °C 惰性和氧化 CuO 碳中心苯氧自由基 DD、MCDD、DCDF [45 − 46] 1,2-二氯苯 200—550 °C 惰性和氧化 CuO 苯氧自由基、半醌自由基 DD、MCDD、DCDF、DF [47] 2-氯酚 200—550 °C O2 Fe2O3 苯氧自由基、半醌自由基 DD、DF、MCDD/F、DCDD/F、TrCDD [48] 2,3,6-三氯酚 25—250 °C O2 CuO 苯氧自由基 PCDD/Fs [49] 1,2,3-三氯苯 250—550 °C 不同浓度O2 CuO、Fe2O3 苯氧自由基、半醌自由基 DF、PCDD/Fs [50] 氯酚 600 °C 氧化气氛 N.A. 苯氧自由基、环戊二烯自由基 PCNs、PCDFs [5] N.A., 不适用. DD, 二苯并-对-二噁英. MCDD, 一氯代二苯并-对-二噁英. DCDF, 二氯代二苯并呋喃. DF, 二苯并呋喃. TrCDD, 三氯代二苯并-对-二噁英. 表 2 不同阻滞剂对UPOPs的阻滞机理
Table 2. Inhibition mechanisms of various inhibitors on UPOPs
阻滞剂类型
Inhibitor category常用阻滞剂
Commonly used inhibitor影响因素
Impact factor阻滞机理
Inhibition mechanism碱性阻滞剂 Na2CO3、CaO、CaCO3、Ca(OH)2 Ca/Cl比值、温度 ● 吸收氯源,抑制有机氯生成[59]
● 将金属氯化物转化为金属氧化物,降低催化活性[60]
● 分解前驱体[26]硫基阻滞剂 S、SO2、Na2S2O3 S/Cl比值、温度 ● 将催化剂转化为硫酸盐或金属硫化物,降低催化活性[61]
● 与Cl2反应,消耗氯源[62]
● 磺化前驱体[63]氮基阻滞剂 NH3、NH4NO3、尿素 N/Cl比值、温度、
添加量● 与Cl2反应,消耗氯源[64]
● 与前驱体反应,生成芳香胺、氰化物和吡啶类化合物[65]
● 与金属催化剂螯合生成稳定络合物[66] -
[1] LIU G R, ZHENG M H, CAI M W, et al. Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes[J]. Chemosphere, 2013, 90(9): 2453-2460. doi: 10.1016/j.chemosphere.2012.11.008 [2] LIU G R, CAI Z W, ZHENG M H. Sources of unintentionally produced polychlorinated naphthalenes[J]. Chemosphere, 2014, 94: 1-12. doi: 10.1016/j.chemosphere.2013.09.021 [3] 王得梁, 谢雯静, 赵文博, 等. 工业过程二恶英的排放特征及其控制技术[J]. 环境化学, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704 WANG D L, XIE W J, ZHAO W B, et al. Dioxin emission characteristics and control technologies in industrial processes[J]. Environmental Chemistry, 2023, 42(5): 1449-1465 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022070704
[4] YANG Y P, WU G L, JIANG C, et al. Variations of PCDD/Fs emissions from secondary nonferrous smelting plants and towards to their source emission reduction[J]. Environmental Pollution, 2020, 260: 113946. doi: 10.1016/j.envpol.2020.113946 [5] KIM D H, MULHOLLAND J A, RYU J Y. Formation of polychlorinated naphthalenes from chlorophenols[J]. Proceedings of the Combustion Institute, 2004, 30(1): 1245-1253. [6] STANMORE B R. The formation of dioxins in combustion systems[J]. Combustion and Flame, 2004, 136(3): 398-427. doi: 10.1016/j.combustflame.2003.11.004 [7] WEHRMEIER A, LENOIR D, SIDHU S S, et al. Role of copper species in chlorination and condensation reactions of acetylene[J]. Environmental Science & Technology:ES& T, 1998, 32(18): 2741-2748. [8] TAYLOR P H, SIDHU S S, RUBEY W A, et al. Evidence for a unified pathway of dioxin formation from aliphatic hydrocarbons[J]. Symposium (International) on Combustion, 1998, 27(2): 1769-1775. doi: 10.1016/S0082-0784(98)80018-0 [9] RYU J Y, MULHOLLAND J A. Metal-mediated chlorinated dibenzo-p-dioxin (CDD) and dibenzofuran (CDF) formation from phenols[J]. Chemosphere, 2005, 58(7): 977-988. doi: 10.1016/j.chemosphere.2004.08.084 [10] WEBER R, LINO F, IMAGAWA T, et al. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators[J]. Chemosphere, 2001, 44(6): 1429-1438. doi: 10.1016/S0045-6535(00)00508-7 [11] WANG W, MA Y, LI S Y, et al. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy & Fuels, 2016: acs. energyfuels. 5b02211. [12] ARUOMA O I. Free radicals, oxidative stress, and antioxidants in human health and disease[J]. Journal of the American Oil Chemists’ Society, 1998, 75(2): 199-212. doi: 10.1007/s11746-998-0032-9 [13] CHEN Q C, SUN H Y, MU Z, et al. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi’an, Northwestern China[J]. Environmental Pollution, 2019, 247: 18-26. doi: 10.1016/j.envpol.2019.01.015 [14] SIGMUND G, SANTÍN C, PIGNITTER M, et al. Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years[J]. Communications Earth & Environment, 2021, 2: 68. [15] FENG W L, ZHANG Y F, HUANG L L, et al. Spatial distribution, pollution characterization, and risk assessment of environmentally persistent free radicals in urban road dust from central China[J]. Environmental Pollution, 2022, 298: 118861. doi: 10.1016/j.envpol.2022.118861 [16] SQUADRITO G L, CUETO R, DELLINGER B, et al. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter[J]. Free Radical Biology & Medicine, 2001, 31(9): 1132-1138. [17] LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings[J]. Environmental Science & Technology, 2014, 48(15): 8581-8587. [18] VEJERANO E P, RAO G Y, KHACHATRYAN L, et al. Environmentally persistent free radicals: Insights on a new class of pollutants[J]. Environmental Science & Technology, 2018, 52(5): 2468-2481. [19] ZHAO S, GAO P, MIAO D, et al. Formation and evolution of solvent-extracted and nonextractable environmentally persistent free radicals in fly ash of municipal solid waste incinerators[J]. Environmental Science & Technology, 2019, 53(17): 10120-10130. [20] DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute. International Symposium on Combustion, 2007, 31(1): 521-528. [21] LIU X Y, YANG L L, LIU G R, et al. Formation of environmentally persistent free radicals during thermochemical processes and their correlations with unintentional persistent organic pollutants[J]. Environmental Science & Technology, 2021, 55(10): 6529-6541. [22] IINO F, IMAGAWA T, TAKEUCHI M, et al. Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol[J]. Chemosphere, 1999, 39(15): 2749-2756. doi: 10.1016/S0045-6535(99)00209-X [23] ZHANG M M, YANG J, BUEKENS A, et al. PCDD/F catalysis by metal chlorides and oxides[J]. Chemosphere, 2016, 159: 536-544. doi: 10.1016/j.chemosphere.2016.06.049 [24] FUJIMORI T, TAKAOKA M, TAKEDA N. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash[J]. Environmental Science & Technology, 2009, 43(21): 8053-8059. [25] FUJIMORI T, NAKAMURA M, TAKAOKA M, et al. Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations[J]. Journal of Hazardous Materials, 2016, 311: 43-50. doi: 10.1016/j.jhazmat.2016.02.054 [26] LI Q Q, LI L W, SU G J, et al. Synergetic inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide[J]. Journal of Hazardous Materials, 2016, 317: 394-402. doi: 10.1016/j.jhazmat.2016.05.090 [27] DELHAES P, MARCHAND A. Analyse de la forme et de la position de signaix rpe observes sur des carbones graphitiques pulverulents[J]. Carbon, 1968, 6(2): 257-266. doi: 10.1016/0008-6223(68)90493-4 [28] HALES B J. Immobilized radicals. I. Principal electron spin resonance parameters of the benzosemiquinone radical[J]. Journal of the American Chemical Society, 1975, 97(21): 5993-5997. doi: 10.1021/ja00854a007 [29] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science & Technology, 2008, 42(13): 4982-4988. [30] VEJERANO E, LOMNICKI S, DELLINGER B. Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)2O3/silica surface[J]. Environmental Science & Technology, 2011, 45(2): 589-594. [31] VEJERANO E, LOMNICKI S M, DELLINGER B. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(II)O supported on a silica surface[J]. Environmental Science & Technology, 2012, 46(17): 9406-9411. [32] VEJERANO E, LOMNICKI S, DELLINGER B. Lifetime of combustion-generated environmentally persistent free radicals on Zn(II)O and other transition metal oxides[J]. Journal of Environmental Monitoring:JEM, 2012, 14(10): 2803-2806. doi: 10.1039/c2em30545c [33] D’ARIENZO M, GAMBA L, MORAZZONI F, et al. Experimental and theoretical investigation on the catalytic generation of environmentally persistent free radicals from benzene[J]. The Journal of Physical Chemistry C, 2017, 121(17): 9381-9393. doi: 10.1021/acs.jpcc.7b01449 [34] BORROWMAN C K, ZHOU S M, BURROW T E, et al. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds[J]. Physical Chemistry Chemical Physics:PCCP, 2016, 18(1): 205-212. doi: 10.1039/C5CP05606C [35] YANG L L, LIU G R, ZHENG M H, et al. Pivotal roles of metal oxides in the formation of environmentally persistent free radicals[J]. Environmental Science & Technology, 2017, 51(21): 12329-12336. [36] SAKR N I, KIZILKAYA O, CARLSON S F, et al. Formation of environmentally persistent free radicals (EPFRs) on the phenol-dosed α-Fe2O3(0001) surface[J]. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 2021, 125(40): 21882-21890. doi: 10.1021/acs.jpcc.1c04298 [37] QIN L J, YANG L L, LIU X Y, et al. Formation of environmentally persistent free radicals from thermochemical reactions of catechol[J]. The Science of the Total Environment, 2021, 772: 145313. doi: 10.1016/j.scitotenv.2021.145313 [38] SAKR N I, PATTERSON M C, DAEMEN L, et al. Vibrational and structural studies of environmentally persistent free radicals formed by phenol-dosed metal oxide nanoparticles[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2019, 35(51): 16726-16733. doi: 10.1021/acs.langmuir.9b02948 [39] AHMED O H, ALTARAWNEH M, AL-HARAHSHEH M, et al. Formation of phenoxy-type Environmental Persistent Free Radicals (EPFRs) from dissociative adsorption of phenol on Cu/Fe and their partial oxides[J]. Chemosphere, 2020, 240: 124921. doi: 10.1016/j.chemosphere.2019.124921 [40] PATTERSON M C, DiTUSA M F, McFERRIN C A, et al. Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation[J]. Chemical Physics Letters, 2017, 670: 5-10. doi: 10.1016/j.cplett.2016.12.061 [41] ASSAF N W, ALTARAWNEH M, OLUWOYE I, et al. Formation of environmentally persistent free radicals on α-Al2O3[J]. Environmental Science & Technology, 2016, 50(20): 11094-11102. [42] PATTERSON M C, KEILBART N D, KIRURI L W, et al. EPFR Formation from Phenol adsorption on Al2O3 and TiO2: EPR and EELS studies[J]. Chemical Physics, 2013, 422: 277-282. doi: 10.1016/j.chemphys.2012.12.003 [43] WU J Z, LIU Y, ZHANG J, et al. A density functional theory calculation for revealing environmentally persistent free radicals generated on PbO particulate[J]. Chemosphere, 2020, 255: 126910. doi: 10.1016/j.chemosphere.2020.126910 [44] KIRURI L W, KHACHATRYAN L, DELLINGER B, et al. Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates[J]. Environmental Science & Technology, 2014, 48(4): 2212-2217. [45] LOMNICKI S, DELLINGER B. A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/silica surface[J]. The Journal of Physical Chemistry A, 2003, 107(22): 4387-4395. doi: 10.1021/jp026045z [46] LOMNICKI S, DELLINGER B. Formation of PCDD/F from the pyrolysis of 2-chlorophenol on the surface of dispersed copper oxide particles[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2463-2468. doi: 10.1016/S1540-7489(02)80300-5 [47] NGANAI S, LOMNICKI S M, DELLINGER B. Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1, 2-dichlorobenzene[J]. Environmental Science & Technology, 2011, 45(3): 1034-1040. [48] GUAN X, GHIMIRE A, POTTER P M, et al. Role of Fe2O3 in fly ash surrogate on PCDD/Fs formation from 2-monochlorophenol[J]. Chemosphere, 2019, 226: 809-816. doi: 10.1016/j.chemosphere.2019.03.175 [49] YANG L L, LIU G R, ZHENG M H, et al. Molecular Mechanism of Dioxin Formation from Chlorophenol based on Electron Paramagnetic Resonance Spectroscopy[J]. Environmental Science & Technology, 2017, 51(9): 4999-5007. [50] CHEN T, SUN C, WANG T J, et al. Formation of DF, PCDD/Fs and EPFRs from 1, 2, 3-trichlorobenzene over metal oxide/silica surface[J]. Waste Management, 2020, 118: 27-35. doi: 10.1016/j.wasman.2020.08.024 [51] LI Z H, KONG B, WEI A Z, et al. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method[J]. Environmental Science and Pollution Research, 2016, 23(23): 23593-23605. doi: 10.1007/s11356-016-7589-x [52] KHACHATRYAN L, LOMNICKI S, DELLINGER B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol[J]. Chemosphere, 2007, 68(9): 1741-1750. doi: 10.1016/j.chemosphere.2007.03.042 [53] ALSOUFI A, ALTARAWNEH M, DLUGOGORSKI B Z, et al. A DFT study on the self-coupling reactions of the three isomeric semiquinone radicals[J]. Journal of Molecular Structure:THEOCHEM, 2010, 958(1/2/3): 106-115. [54] LIU X Y, LIU G R, LIU S T, et al. Free radical mechanism of toxic organic compound formations from o-chlorophenol[J]. Journal of Hazardous Materials, 2023, 443(Pt B): 130367. [55] SCHOONENBOOM M H, OLIE K. Formation of PCDDs and PCDFs from anthracene and chloroanthracene in a model fly ash system[J]. Environmental Science & Technology, 1995, 29(8): 2005-2009. [56] LIN B C, YANG L L, ZHENG M H, et al. Synergetic promoting/inhibiting mechanisms of copper/calcium compounds in the formation of persistent organic pollutants and environmentally persistent free radicals from anthracene[J]. Chemical Engineering Journal, 2022, 441: 136102. doi: 10.1016/j.cej.2022.136102 [57] MA Y F, WANG P Y, LIN X Q, et al. Formation and inhibition of Polychlorinated-ρ-dibenzodioxins and dibenzofurans from mechanical grate municipal solid waste incineration systems[J]. Journal of Hazardous Materials, 2021, 403: 123812. doi: 10.1016/j.jhazmat.2020.123812 [58] 徐帅玺. 典型钢铁生产过程二恶英生成机理及抑制研究[D]. 杭州: 浙江大学, 2018. XU S X. Study on mechanism of PCDD/fs formation and inhibition during steel manufacture process[D]. Hangzhou: Zhejiang University, 2018 (in Chinese).
[59] TSUYUMOTO I, KINOMURA M, KUZUHARA K. Inhibition of dioxin formation in flue gas by removal of hydrogen chloride using foaming water glass[J]. Journal of the Ceramic Society of Japan, 2006, 114(1329): 408-410. doi: 10.2109/jcersj.114.408 [60] ZHANG H, LAN D Y, LÜ F, et al. Inhibition of chlorobenzenes formation by calcium oxide during solid waste incineration[J]. Journal of Hazardous Materials, 2020, 400: 123321. doi: 10.1016/j.jhazmat.2020.123321 [61] RYAN S P, LI X D, GULLETT B K, et al. Experimental study on the effect of SO2 on PCDD/F emissions: Determination of the importance of gas-phase versus solid-phase reactions in PCDD/F formation[J]. Environmental Science & Technology, 2006, 40(22): 7040-7047. [62] RAGHUNATHAN K, GULLETT B K. Role of sulfur in reducing PCDD and PCDF formation[J]. Environmental Science & Technology, 1996, 30(6): 1827-1834. [63] TUPPURAINEN K, HALONEN I, RUOKOJÄRVI P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review[J]. Chemosphere, 1998, 36(7): 1493-1511. doi: 10.1016/S0045-6535(97)10048-0 [64] 龙红明, 李家新, 王平, 等. 尿素对减少铁矿烧结过程二恶英排放的作用机理[J]. 过程工程学报, 2010, 10(5): 944-949. LONG H M, LI J X, WANG P, et al. Reaction mechanism of emission reduction of dioxin by addition of urea in iron ore sintering process[J]. The Chinese Journal of Process Engineering, 2010, 10(5): 944-949 (in Chinese).
[65] KUZUHARA S, SATO H, TSUBOUCHI N, et al. Effect of nitrogen-containing compounds on polychlorinated dibenzo-p-dioxin/dibenzofuran formation through de novo synthesis[J]. Environmental Science & Technology, 2005, 39(3): 795-799. [66] LUNA A, AMEKRAZ B, MORIZUR J P, et al. Reactions of urea with Cu+ in the gas phase: an experimental and theoretical study[J]. The Journal of Physical Chemistry A, 2000, 104(14): 3132-3141. doi: 10.1021/jp9934634 [67] 钱永, 郑明辉, 刘文彬, 等. 钙化合物对前生体生成二噁英类的阻滞作用[J]. 环境化学, 2005, 24(6): 633-637. doi: 10.3321/j.issn:0254-6108.2005.06.002 QIAN Y, ZHENG M H, LIU W B, et al. Inhibition of calcium oxide, hydroxide and salts on pcdd/fs formation from precursors[J]. Environmental Chemistry, 2005, 24(6): 633-637 (in Chinese). doi: 10.3321/j.issn:0254-6108.2005.06.002
[68] WANG Y F, WANG L C, HSIEH L T, et al. Effect of temperature and CaO addition on the removal of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from a medical waste incinerator[J]. Aerosol and Air Quality Research, 2012, 12(2): 191-199. doi: 10.4209/aaqr.2011.06.0079 [69] MA H T, DU N, LIN X Y, et al. Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste[J]. The Science of the Total Environment, 2018, 633: 1263-1271. doi: 10.1016/j.scitotenv.2018.03.282 [70] LUNDIN L, MOLTÓ J, FULLANA A. Low temperature thermal degradation of PCDD/Fs in soil using nanosized particles of zerovalent iron and CaO[J]. Chemosphere, 2013, 91(6): 740-744. doi: 10.1016/j.chemosphere.2013.02.021 [71] LIU W B, ZHENG M H, ZHANG B, et al. Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide[J]. Chemosphere, 2005, 60(6): 785-790. doi: 10.1016/j.chemosphere.2005.04.020 [72] LIN X Q, JI L J, ZHAN M X, et al. Suppression of PCDD/fs by raw meal in cement kilns[J]. Aerosol and Air Quality Research, 2018, 18(4): 1032-1043. doi: 10.4209/aaqr.2018.01.0023 [73] YAN J H, PENG Z, LU S Y, et al. Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration[J]. Journal of Hazardous Materials, 2007, 147(1/2): 652-657. [74] 卫樱蕾, 严建华, 陆胜勇, 等. 钙基添加剂对机械化学法降解二恶英的影响[J]. 浙江大学学报(工学版), 2010, 44(5): 991-997. doi: 10.3785/j.issn.1008-973X.2010.05.026 WEI Y L, YAN J H, LU S Y, et al. Decomposition of PCDD/Fs by mechanochemical means with calcium-based additives[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(5): 991-997 (in Chinese). doi: 10.3785/j.issn.1008-973X.2010.05.026
[75] WANG X X, LV J B, YING Y X, et al. A new insight into the CaO-induced inhibition pathways on PCDD/F formation: Metal passivation, dechlorination and hydroxide substitution[J]. The Science of the Total Environment, 2023, 885: 163782. doi: 10.1016/j.scitotenv.2023.163782 [76] SHAO K, YAN J H, LI X D, et al. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system[J]. Chemosphere, 2010, 78(10): 1230-1235. doi: 10.1016/j.chemosphere.2009.12.043 [77] LONG H M, LI J X, WANG P, et al. Emission reduction of dioxin in iron ore sintering by adding urea as inhibitor[J]. Ironmaking & Steelmaking, 2011, 38(4): 258-262. [78] WANG P J, XIE F, YAN F, et al. Inhibitory effect and mechanism of an N-S-based inhibitor (CH4N2S) on PCDD/fs in flue gas and fly ash in a full-scale municipal solid waste incinerator[J]. ACS ES& T Engineering, 2023, 3(10): 1557-1567. [79] ZHANG Y D, BUEKENS A, LIU L N, et al. Suppression of chlorinated aromatics by nitrogen and sulphur inhibitors in iron ore sintering[J]. Chemosphere, 2016, 155: 300-307. doi: 10.1016/j.chemosphere.2016.04.065 [80] MA Y F, LIN X Q, CHEN Z L, et al. Influences of P-N-containing inhibitor and memory effect on PCDD/F emissions during the full-scale municipal solid waste incineration[J]. Chemosphere, 2019, 228: 495-502. doi: 10.1016/j.chemosphere.2019.04.161 [81] HUNSINGER H, SEIFERT H, JAY K. Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle[J]. Environmental Engineering Science, 2007, 24(8): 1145-1159. doi: 10.1089/ees.2007.0108 [82] 付建英, 陈彤, 吴海龙, 等. SO2抑制二噁英从头合成的实验及其过程模拟[J]. 化工学报, 2014, 65(9): 3687-3693. FU J Y, CHEN T, WU H L, et al. Experiments and reaction simulation for SO2 inhibition on de novo formation of PCDD/Fs[J]. CIESC Journal, 2014, 65(9): 3687-3693 (in Chinese).
[83] 杨帆, 黎烈武, 童东革, 等. 钙基复合氧化物对五氯酚生成二噁英的阻滞作用[J]. 环境化学, 2015, 34(8): 1439-1445. doi: 10.7524/j.issn.0254-6108.2015.08.2015013002 YANG F, LI L W, TONG D G, et al. Inhibition of calcium-based composite oxide on PCDD/Fs formation from PCP[J]. Environmental Chemistry, 2015, 34(8): 1439-1445 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.08.2015013002