[1] |
LIU G R, ZHENG M H, CAI M W, et al. Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes[J]. Chemosphere, 2013, 90(9): 2453-2460. doi: 10.1016/j.chemosphere.2012.11.008
|
[2] |
LIU G R, CAI Z W, ZHENG M H. Sources of unintentionally produced polychlorinated naphthalenes[J]. Chemosphere, 2014, 94: 1-12. doi: 10.1016/j.chemosphere.2013.09.021
|
[3] |
王得梁, 谢雯静, 赵文博, 等. 工业过程二恶英的排放特征及其控制技术[J]. 环境化学, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704
WANG D L, XIE W J, ZHAO W B, et al. Dioxin emission characteristics and control technologies in industrial processes[J]. Environmental Chemistry, 2023, 42(5): 1449-1465 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022070704
|
[4] |
YANG Y P, WU G L, JIANG C, et al. Variations of PCDD/Fs emissions from secondary nonferrous smelting plants and towards to their source emission reduction[J]. Environmental Pollution, 2020, 260: 113946. doi: 10.1016/j.envpol.2020.113946
|
[5] |
KIM D H, MULHOLLAND J A, RYU J Y. Formation of polychlorinated naphthalenes from chlorophenols[J]. Proceedings of the Combustion Institute, 2004, 30(1): 1245-1253.
|
[6] |
STANMORE B R. The formation of dioxins in combustion systems[J]. Combustion and Flame, 2004, 136(3): 398-427. doi: 10.1016/j.combustflame.2003.11.004
|
[7] |
WEHRMEIER A, LENOIR D, SIDHU S S, et al. Role of copper species in chlorination and condensation reactions of acetylene[J]. Environmental Science & Technology:ES& T, 1998, 32(18): 2741-2748.
|
[8] |
TAYLOR P H, SIDHU S S, RUBEY W A, et al. Evidence for a unified pathway of dioxin formation from aliphatic hydrocarbons[J]. Symposium (International) on Combustion, 1998, 27(2): 1769-1775. doi: 10.1016/S0082-0784(98)80018-0
|
[9] |
RYU J Y, MULHOLLAND J A. Metal-mediated chlorinated dibenzo-p-dioxin (CDD) and dibenzofuran (CDF) formation from phenols[J]. Chemosphere, 2005, 58(7): 977-988. doi: 10.1016/j.chemosphere.2004.08.084
|
[10] |
WEBER R, LINO F, IMAGAWA T, et al. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators[J]. Chemosphere, 2001, 44(6): 1429-1438. doi: 10.1016/S0045-6535(00)00508-7
|
[11] |
WANG W, MA Y, LI S Y, et al. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy & Fuels, 2016: acs. energyfuels. 5b02211.
|
[12] |
ARUOMA O I. Free radicals, oxidative stress, and antioxidants in human health and disease[J]. Journal of the American Oil Chemists’ Society, 1998, 75(2): 199-212. doi: 10.1007/s11746-998-0032-9
|
[13] |
CHEN Q C, SUN H Y, MU Z, et al. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi’an, Northwestern China[J]. Environmental Pollution, 2019, 247: 18-26. doi: 10.1016/j.envpol.2019.01.015
|
[14] |
SIGMUND G, SANTÍN C, PIGNITTER M, et al. Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years[J]. Communications Earth & Environment, 2021, 2: 68.
|
[15] |
FENG W L, ZHANG Y F, HUANG L L, et al. Spatial distribution, pollution characterization, and risk assessment of environmentally persistent free radicals in urban road dust from central China[J]. Environmental Pollution, 2022, 298: 118861. doi: 10.1016/j.envpol.2022.118861
|
[16] |
SQUADRITO G L, CUETO R, DELLINGER B, et al. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter[J]. Free Radical Biology & Medicine, 2001, 31(9): 1132-1138.
|
[17] |
LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings[J]. Environmental Science & Technology, 2014, 48(15): 8581-8587.
|
[18] |
VEJERANO E P, RAO G Y, KHACHATRYAN L, et al. Environmentally persistent free radicals: Insights on a new class of pollutants[J]. Environmental Science & Technology, 2018, 52(5): 2468-2481.
|
[19] |
ZHAO S, GAO P, MIAO D, et al. Formation and evolution of solvent-extracted and nonextractable environmentally persistent free radicals in fly ash of municipal solid waste incinerators[J]. Environmental Science & Technology, 2019, 53(17): 10120-10130.
|
[20] |
DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute. International Symposium on Combustion, 2007, 31(1): 521-528.
|
[21] |
LIU X Y, YANG L L, LIU G R, et al. Formation of environmentally persistent free radicals during thermochemical processes and their correlations with unintentional persistent organic pollutants[J]. Environmental Science & Technology, 2021, 55(10): 6529-6541.
|
[22] |
IINO F, IMAGAWA T, TAKEUCHI M, et al. Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol[J]. Chemosphere, 1999, 39(15): 2749-2756. doi: 10.1016/S0045-6535(99)00209-X
|
[23] |
ZHANG M M, YANG J, BUEKENS A, et al. PCDD/F catalysis by metal chlorides and oxides[J]. Chemosphere, 2016, 159: 536-544. doi: 10.1016/j.chemosphere.2016.06.049
|
[24] |
FUJIMORI T, TAKAOKA M, TAKEDA N. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash[J]. Environmental Science & Technology, 2009, 43(21): 8053-8059.
|
[25] |
FUJIMORI T, NAKAMURA M, TAKAOKA M, et al. Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations[J]. Journal of Hazardous Materials, 2016, 311: 43-50. doi: 10.1016/j.jhazmat.2016.02.054
|
[26] |
LI Q Q, LI L W, SU G J, et al. Synergetic inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide[J]. Journal of Hazardous Materials, 2016, 317: 394-402. doi: 10.1016/j.jhazmat.2016.05.090
|
[27] |
DELHAES P, MARCHAND A. Analyse de la forme et de la position de signaix rpe observes sur des carbones graphitiques pulverulents[J]. Carbon, 1968, 6(2): 257-266. doi: 10.1016/0008-6223(68)90493-4
|
[28] |
HALES B J. Immobilized radicals. I. Principal electron spin resonance parameters of the benzosemiquinone radical[J]. Journal of the American Chemical Society, 1975, 97(21): 5993-5997. doi: 10.1021/ja00854a007
|
[29] |
LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science & Technology, 2008, 42(13): 4982-4988.
|
[30] |
VEJERANO E, LOMNICKI S, DELLINGER B. Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)2O3/silica surface[J]. Environmental Science & Technology, 2011, 45(2): 589-594.
|
[31] |
VEJERANO E, LOMNICKI S M, DELLINGER B. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(II)O supported on a silica surface[J]. Environmental Science & Technology, 2012, 46(17): 9406-9411.
|
[32] |
VEJERANO E, LOMNICKI S, DELLINGER B. Lifetime of combustion-generated environmentally persistent free radicals on Zn(II)O and other transition metal oxides[J]. Journal of Environmental Monitoring:JEM, 2012, 14(10): 2803-2806. doi: 10.1039/c2em30545c
|
[33] |
D’ARIENZO M, GAMBA L, MORAZZONI F, et al. Experimental and theoretical investigation on the catalytic generation of environmentally persistent free radicals from benzene[J]. The Journal of Physical Chemistry C, 2017, 121(17): 9381-9393. doi: 10.1021/acs.jpcc.7b01449
|
[34] |
BORROWMAN C K, ZHOU S M, BURROW T E, et al. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds[J]. Physical Chemistry Chemical Physics:PCCP, 2016, 18(1): 205-212. doi: 10.1039/C5CP05606C
|
[35] |
YANG L L, LIU G R, ZHENG M H, et al. Pivotal roles of metal oxides in the formation of environmentally persistent free radicals[J]. Environmental Science & Technology, 2017, 51(21): 12329-12336.
|
[36] |
SAKR N I, KIZILKAYA O, CARLSON S F, et al. Formation of environmentally persistent free radicals (EPFRs) on the phenol-dosed α-Fe2O3(0001) surface[J]. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 2021, 125(40): 21882-21890. doi: 10.1021/acs.jpcc.1c04298
|
[37] |
QIN L J, YANG L L, LIU X Y, et al. Formation of environmentally persistent free radicals from thermochemical reactions of catechol[J]. The Science of the Total Environment, 2021, 772: 145313. doi: 10.1016/j.scitotenv.2021.145313
|
[38] |
SAKR N I, PATTERSON M C, DAEMEN L, et al. Vibrational and structural studies of environmentally persistent free radicals formed by phenol-dosed metal oxide nanoparticles[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2019, 35(51): 16726-16733. doi: 10.1021/acs.langmuir.9b02948
|
[39] |
AHMED O H, ALTARAWNEH M, AL-HARAHSHEH M, et al. Formation of phenoxy-type Environmental Persistent Free Radicals (EPFRs) from dissociative adsorption of phenol on Cu/Fe and their partial oxides[J]. Chemosphere, 2020, 240: 124921. doi: 10.1016/j.chemosphere.2019.124921
|
[40] |
PATTERSON M C, DiTUSA M F, McFERRIN C A, et al. Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation[J]. Chemical Physics Letters, 2017, 670: 5-10. doi: 10.1016/j.cplett.2016.12.061
|
[41] |
ASSAF N W, ALTARAWNEH M, OLUWOYE I, et al. Formation of environmentally persistent free radicals on α-Al2O3[J]. Environmental Science & Technology, 2016, 50(20): 11094-11102.
|
[42] |
PATTERSON M C, KEILBART N D, KIRURI L W, et al. EPFR Formation from Phenol adsorption on Al2O3 and TiO2: EPR and EELS studies[J]. Chemical Physics, 2013, 422: 277-282. doi: 10.1016/j.chemphys.2012.12.003
|
[43] |
WU J Z, LIU Y, ZHANG J, et al. A density functional theory calculation for revealing environmentally persistent free radicals generated on PbO particulate[J]. Chemosphere, 2020, 255: 126910. doi: 10.1016/j.chemosphere.2020.126910
|
[44] |
KIRURI L W, KHACHATRYAN L, DELLINGER B, et al. Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates[J]. Environmental Science & Technology, 2014, 48(4): 2212-2217.
|
[45] |
LOMNICKI S, DELLINGER B. A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/silica surface[J]. The Journal of Physical Chemistry A, 2003, 107(22): 4387-4395. doi: 10.1021/jp026045z
|
[46] |
LOMNICKI S, DELLINGER B. Formation of PCDD/F from the pyrolysis of 2-chlorophenol on the surface of dispersed copper oxide particles[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2463-2468. doi: 10.1016/S1540-7489(02)80300-5
|
[47] |
NGANAI S, LOMNICKI S M, DELLINGER B. Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1, 2-dichlorobenzene[J]. Environmental Science & Technology, 2011, 45(3): 1034-1040.
|
[48] |
GUAN X, GHIMIRE A, POTTER P M, et al. Role of Fe2O3 in fly ash surrogate on PCDD/Fs formation from 2-monochlorophenol[J]. Chemosphere, 2019, 226: 809-816. doi: 10.1016/j.chemosphere.2019.03.175
|
[49] |
YANG L L, LIU G R, ZHENG M H, et al. Molecular Mechanism of Dioxin Formation from Chlorophenol based on Electron Paramagnetic Resonance Spectroscopy[J]. Environmental Science & Technology, 2017, 51(9): 4999-5007.
|
[50] |
CHEN T, SUN C, WANG T J, et al. Formation of DF, PCDD/Fs and EPFRs from 1, 2, 3-trichlorobenzene over metal oxide/silica surface[J]. Waste Management, 2020, 118: 27-35. doi: 10.1016/j.wasman.2020.08.024
|
[51] |
LI Z H, KONG B, WEI A Z, et al. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method[J]. Environmental Science and Pollution Research, 2016, 23(23): 23593-23605. doi: 10.1007/s11356-016-7589-x
|
[52] |
KHACHATRYAN L, LOMNICKI S, DELLINGER B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol[J]. Chemosphere, 2007, 68(9): 1741-1750. doi: 10.1016/j.chemosphere.2007.03.042
|
[53] |
ALSOUFI A, ALTARAWNEH M, DLUGOGORSKI B Z, et al. A DFT study on the self-coupling reactions of the three isomeric semiquinone radicals[J]. Journal of Molecular Structure:THEOCHEM, 2010, 958(1/2/3): 106-115.
|
[54] |
LIU X Y, LIU G R, LIU S T, et al. Free radical mechanism of toxic organic compound formations from o-chlorophenol[J]. Journal of Hazardous Materials, 2023, 443(Pt B): 130367.
|
[55] |
SCHOONENBOOM M H, OLIE K. Formation of PCDDs and PCDFs from anthracene and chloroanthracene in a model fly ash system[J]. Environmental Science & Technology, 1995, 29(8): 2005-2009.
|
[56] |
LIN B C, YANG L L, ZHENG M H, et al. Synergetic promoting/inhibiting mechanisms of copper/calcium compounds in the formation of persistent organic pollutants and environmentally persistent free radicals from anthracene[J]. Chemical Engineering Journal, 2022, 441: 136102. doi: 10.1016/j.cej.2022.136102
|
[57] |
MA Y F, WANG P Y, LIN X Q, et al. Formation and inhibition of Polychlorinated-ρ-dibenzodioxins and dibenzofurans from mechanical grate municipal solid waste incineration systems[J]. Journal of Hazardous Materials, 2021, 403: 123812. doi: 10.1016/j.jhazmat.2020.123812
|
[58] |
徐帅玺. 典型钢铁生产过程二恶英生成机理及抑制研究[D]. 杭州: 浙江大学, 2018.
XU S X. Study on mechanism of PCDD/fs formation and inhibition during steel manufacture process[D]. Hangzhou: Zhejiang University, 2018 (in Chinese).
|
[59] |
TSUYUMOTO I, KINOMURA M, KUZUHARA K. Inhibition of dioxin formation in flue gas by removal of hydrogen chloride using foaming water glass[J]. Journal of the Ceramic Society of Japan, 2006, 114(1329): 408-410. doi: 10.2109/jcersj.114.408
|
[60] |
ZHANG H, LAN D Y, LÜ F, et al. Inhibition of chlorobenzenes formation by calcium oxide during solid waste incineration[J]. Journal of Hazardous Materials, 2020, 400: 123321. doi: 10.1016/j.jhazmat.2020.123321
|
[61] |
RYAN S P, LI X D, GULLETT B K, et al. Experimental study on the effect of SO2 on PCDD/F emissions: Determination of the importance of gas-phase versus solid-phase reactions in PCDD/F formation[J]. Environmental Science & Technology, 2006, 40(22): 7040-7047.
|
[62] |
RAGHUNATHAN K, GULLETT B K. Role of sulfur in reducing PCDD and PCDF formation[J]. Environmental Science & Technology, 1996, 30(6): 1827-1834.
|
[63] |
TUPPURAINEN K, HALONEN I, RUOKOJÄRVI P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review[J]. Chemosphere, 1998, 36(7): 1493-1511. doi: 10.1016/S0045-6535(97)10048-0
|
[64] |
龙红明, 李家新, 王平, 等. 尿素对减少铁矿烧结过程二恶英排放的作用机理[J]. 过程工程学报, 2010, 10(5): 944-949.
LONG H M, LI J X, WANG P, et al. Reaction mechanism of emission reduction of dioxin by addition of urea in iron ore sintering process[J]. The Chinese Journal of Process Engineering, 2010, 10(5): 944-949 (in Chinese).
|
[65] |
KUZUHARA S, SATO H, TSUBOUCHI N, et al. Effect of nitrogen-containing compounds on polychlorinated dibenzo-p-dioxin/dibenzofuran formation through de novo synthesis[J]. Environmental Science & Technology, 2005, 39(3): 795-799.
|
[66] |
LUNA A, AMEKRAZ B, MORIZUR J P, et al. Reactions of urea with Cu+ in the gas phase: an experimental and theoretical study[J]. The Journal of Physical Chemistry A, 2000, 104(14): 3132-3141. doi: 10.1021/jp9934634
|
[67] |
钱永, 郑明辉, 刘文彬, 等. 钙化合物对前生体生成二噁英类的阻滞作用[J]. 环境化学, 2005, 24(6): 633-637. doi: 10.3321/j.issn:0254-6108.2005.06.002
QIAN Y, ZHENG M H, LIU W B, et al. Inhibition of calcium oxide, hydroxide and salts on pcdd/fs formation from precursors[J]. Environmental Chemistry, 2005, 24(6): 633-637 (in Chinese). doi: 10.3321/j.issn:0254-6108.2005.06.002
|
[68] |
WANG Y F, WANG L C, HSIEH L T, et al. Effect of temperature and CaO addition on the removal of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from a medical waste incinerator[J]. Aerosol and Air Quality Research, 2012, 12(2): 191-199. doi: 10.4209/aaqr.2011.06.0079
|
[69] |
MA H T, DU N, LIN X Y, et al. Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste[J]. The Science of the Total Environment, 2018, 633: 1263-1271. doi: 10.1016/j.scitotenv.2018.03.282
|
[70] |
LUNDIN L, MOLTÓ J, FULLANA A. Low temperature thermal degradation of PCDD/Fs in soil using nanosized particles of zerovalent iron and CaO[J]. Chemosphere, 2013, 91(6): 740-744. doi: 10.1016/j.chemosphere.2013.02.021
|
[71] |
LIU W B, ZHENG M H, ZHANG B, et al. Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide[J]. Chemosphere, 2005, 60(6): 785-790. doi: 10.1016/j.chemosphere.2005.04.020
|
[72] |
LIN X Q, JI L J, ZHAN M X, et al. Suppression of PCDD/fs by raw meal in cement kilns[J]. Aerosol and Air Quality Research, 2018, 18(4): 1032-1043. doi: 10.4209/aaqr.2018.01.0023
|
[73] |
YAN J H, PENG Z, LU S Y, et al. Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration[J]. Journal of Hazardous Materials, 2007, 147(1/2): 652-657.
|
[74] |
卫樱蕾, 严建华, 陆胜勇, 等. 钙基添加剂对机械化学法降解二恶英的影响[J]. 浙江大学学报(工学版), 2010, 44(5): 991-997. doi: 10.3785/j.issn.1008-973X.2010.05.026
WEI Y L, YAN J H, LU S Y, et al. Decomposition of PCDD/Fs by mechanochemical means with calcium-based additives[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(5): 991-997 (in Chinese). doi: 10.3785/j.issn.1008-973X.2010.05.026
|
[75] |
WANG X X, LV J B, YING Y X, et al. A new insight into the CaO-induced inhibition pathways on PCDD/F formation: Metal passivation, dechlorination and hydroxide substitution[J]. The Science of the Total Environment, 2023, 885: 163782. doi: 10.1016/j.scitotenv.2023.163782
|
[76] |
SHAO K, YAN J H, LI X D, et al. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system[J]. Chemosphere, 2010, 78(10): 1230-1235. doi: 10.1016/j.chemosphere.2009.12.043
|
[77] |
LONG H M, LI J X, WANG P, et al. Emission reduction of dioxin in iron ore sintering by adding urea as inhibitor[J]. Ironmaking & Steelmaking, 2011, 38(4): 258-262.
|
[78] |
WANG P J, XIE F, YAN F, et al. Inhibitory effect and mechanism of an N-S-based inhibitor (CH4N2S) on PCDD/fs in flue gas and fly ash in a full-scale municipal solid waste incinerator[J]. ACS ES& T Engineering, 2023, 3(10): 1557-1567.
|
[79] |
ZHANG Y D, BUEKENS A, LIU L N, et al. Suppression of chlorinated aromatics by nitrogen and sulphur inhibitors in iron ore sintering[J]. Chemosphere, 2016, 155: 300-307. doi: 10.1016/j.chemosphere.2016.04.065
|
[80] |
MA Y F, LIN X Q, CHEN Z L, et al. Influences of P-N-containing inhibitor and memory effect on PCDD/F emissions during the full-scale municipal solid waste incineration[J]. Chemosphere, 2019, 228: 495-502. doi: 10.1016/j.chemosphere.2019.04.161
|
[81] |
HUNSINGER H, SEIFERT H, JAY K. Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle[J]. Environmental Engineering Science, 2007, 24(8): 1145-1159. doi: 10.1089/ees.2007.0108
|
[82] |
付建英, 陈彤, 吴海龙, 等. SO2抑制二噁英从头合成的实验及其过程模拟[J]. 化工学报, 2014, 65(9): 3687-3693.
FU J Y, CHEN T, WU H L, et al. Experiments and reaction simulation for SO2 inhibition on de novo formation of PCDD/Fs[J]. CIESC Journal, 2014, 65(9): 3687-3693 (in Chinese).
|
[83] |
杨帆, 黎烈武, 童东革, 等. 钙基复合氧化物对五氯酚生成二噁英的阻滞作用[J]. 环境化学, 2015, 34(8): 1439-1445. doi: 10.7524/j.issn.0254-6108.2015.08.2015013002
YANG F, LI L W, TONG D G, et al. Inhibition of calcium-based composite oxide on PCDD/Fs formation from PCP[J]. Environmental Chemistry, 2015, 34(8): 1439-1445 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.08.2015013002
|