-
氯代多环芳烃(chlorinated polycyclic aromatic hydrocarbons, Cl-PAHs)是多环芳烃(polycyclic aromatic hydrocarbons, PAHs)苯环上的一个或多个氢原子被氯原子取代的PAHs衍生物[1]. 工业的热处理[2]、金属二次冶炼[3 − 4]、自来水消毒[5 − 6]和垃圾的排放[7]都会产生Cl-PAHs. 一些Cl-PAHs比母体PAHs显示出更强的致癌、致畸毒性,作为新型持久性污染物长期存在于人类生活环境中,对人类的生活健康有潜在威胁[8]. PAHs光化学过程被认为是水体环境中Cl-PAHs的主要来源之一. 氯离子(Cl−)浓度较高的潮间带、河流和氯碱厂附近沼泽的沉积物中,Cl-PAHs含量丰富,其中6-氯苯并[a]芘、1-氯芘、9,10-二氯蒽、9-氯菲、2-氯芴和9-氯芴等Cl-PAHs含量高达24.1 ng·g-1[9 − 12]. 有学者在模拟潮间带反应体系中加入6种PAHs(萘、菲、蒽、荧蒽、芘、苯并[a]芘),经光照后均检测到了其氯代产物[13].
天然水中Cl-PAHs的光化学生成(光致氯代)主要包括两种机制:直接光转化和间接光转化[14]. 直接光转化是PAHs分子吸收紫外或可见光区域内的光子能量,跃迁到激发态,通过激发态或其进一步转化生成的自由基与Cl−发生反应生成Cl-PAHs. 间接光转化是由另外一个化合物(敏化剂)吸收光子,产生活性自由基,诱导Cl−向氯自由基(Cl·)转化,从而引发PAHs向Cl-PAHs转化.
光转化是水体中Cl-PAHs生成的主要途径之一,研究PAHs的光致氯代过程和机理,有利于更好地了解其在环境中的迁移转化规律. 本文针对Cl-PAHs污染现状与来源、毒性、光稳定性、光化学产生机理和光致氯代影响因素等几个方面进行综述.
水环境中氯代多环芳烃的光化学生成及影响因素研究进展
Research advances on photochemical generation and influencing factors of chlorinated polycyclic aromatic hydrocarbons in water environment
-
摘要: 氯代多环芳烃(chlorinated polycyclic aromatic hydrocarbons,Cl-PAHs)是多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的一种衍生物,广泛存在于各种环境介质中. 一些Cl-PAHs显示出与二噁英相似的毒性特性,甚至更高的毒性当量(TEQs). 了解Cl-PAHs的来源和形成机制对于控制其排放和降低人类暴露于这些有机污染物的风险有重要意义. 然而,目前关于Cl-PAHs的来源、形成机制和环境特征仍缺乏全面的了解. 该综述旨在总结Cl-PAHs在水环境中的污染现状与来源、毒性、光化学形成机理以及PAHs光致氯代影响因素,并对今后的PAHs光致氯代研究方向进行了展望,进而为该类化合物的环境污染及生态风险评估提供相应参考.Abstract: Chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs), the derivatives of polycyclic aromatic hydrocarbons (PAHs), are widely present in various environmental media. Some Cl-PAHs display similar toxic properties and even higher toxic equivalent quantities (TEQs) than dioxins. Understanding the sources and formation mechanisms of Cl-PAHs is important for controlling their emissions and reducing the risk of human exposure to these organic pollutants. Nevertheless, comprehensive knowledge on the sources, formation mechanisms, and environmental characteristics of Cl-PAHs is lacking. Here, this review summarized the current pollution status, sources, toxicity, photochemical formation mechanisms of Cl-PAHs, and photochlorination influencing factors of PAHs in water environment. Furthermore, this review recommended future research directions for PAHs photochlorination and then provided corresponding references for the environmental pollution and ecological risk assessment of this class of compounds.
-
Key words:
- PAHs /
- Cl-PAHs /
- photochlorination /
- chlorination mechanism.
-
表 1 水环境中Cl-PAHs污染现状
Table 1. Current pollution status of Cl-PAHs in water environment
时间
Year基质类型
Type of matrix地点
Location主要Cl-PAHs
Main PAHs参考文献
Reference1985 自来水 日本 筑波 萘、菲、芴和荧蒽的氯代衍生物 [15] 2015 自来水 中国 河南 9,9-二氯芴、9-氯菲、2-氯蒽、9,10-二氯蒽,1-氯芘 [16] 2004 沉积物 中国 黄海
斯里兰卡 康提湖
斯里兰卡 尼甘布泻湖6-氯苯并芘、1-氯芘、8-氯荧蒽 [17] 2014 沉积物 中国 毛威海 9-氯菲 [18] 2012 沉积物 亚洲 阿奥罗滩涂
亚洲 菊池川河
亚洲 白川河2-氯蒽、9,10-二氯蒽 [9] 2016 悬浮性颗粒物 中国 珠江 9-氯菲、2-氯蒽、9-氯蒽、2,7-二氯芴 [12] 表 2 PAHs 和 Cl-PAHs相对毒性潜力
Table 2. Relative toxicity potential of PAHs and Cl-PAHs
化合物
Compounds缩写
AbbreviationREPBapi[19] 1-氯蒽 1-ClAnt 0.03 2-氯蒽 2-ClAnt 0.1 9-氯蒽 9-ClAnt 0.03 9,10-二氯蒽 9,10-Cl2Ant 0.2 9-氯菲 9-ClPhe 0.03 1,9-二氯菲 1,9-Cl2Phe 0.12 3,9-二氯菲 3,9-Cl2Phe 0.32 9,10-二氯菲 9,10-Cl2Phe 0.16 3,9,10-三氯菲 3,9,10-Cl3Phe 0.77 3-氯芴 3-ClFluor 0.17 8-氯芴 8-ClFluor 0.18 3,8-二氯芴 3,8-Cl2Fluor 5.7 6-氯䓛 6-ClChry 2.1 6,12-氯䓛 6,12-Cl2Chry 0.03 1-氯芘 1-ClPyr 0.1 7-氯苯并[a]蒽 7-ClBaA 0.83 7,12-二氯苯并[a]蒽 7,12-Cl2BaA 0.1 6-氯苯并[a]芘 6-ClBaP 0.09 蒽 Ant 0.01 菲 Phe 0.004 芴 Flu 0.01 芘 Pyr 0.05 苯并[a]蒽 BaA 1.4 䓛 Chr 2.5 苯并[a]芘 BaP 1 表 3 PAHs和Cl-PAHs的光降解速率常数、半衰期和偶极矩
Table 3. Photodegradation rate constants, half-lives, and dipole moments of PAHs and Cl-PAHs
化合物
Compounds光降解速率常数/h-1[23]
Photodegradation rate constants半衰期/h[23]
Half-lives偶极矩/ C·m[24]
Dipole moments9-氯菲 0.089 7.8 2.531 3,9-二氯菲 0.082 8.5 0.652 9,10-二氯菲 0.049 14.2 3.844 3,9,10-三氯菲 0.048 14.4 2.391 3-氯芴 0.004 158 2.188 8-氯芴 0.018 38.1 3.231 3,8-二氯芴 0.0035 198 0.802 1-氯芘 0.315 2.2 2.829 7-氯苯并[a]蒽 0.104 6.7 2.584 6-氯苯并[a]芘 0.243 2.9 2.861 菲 0.035 19.7 0.060 芴 0.031 22.4 0.414 芘 0.203 3.4 0.003 苯并[a]蒽 0.221 3.1 0.124 苯并[a]芘 1.67 0.4 0.054 -
[1] ZHAO X Q, CHENG P F, BORCH T, et al. Humidity induces the formation of radicals and enhances photodegradation of chlorinated-PAHs on Fe(Ⅲ)-montmorillonite[J]. Journal of Hazardous Materials, 2022, 423: 127210. doi: 10.1016/j.jhazmat.2021.127210 [2] VUONG Q T, THANG P Q, OHURA T, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons in ambient air: Seasonal variation, profiles, potential sources, and size distribution[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(2): 259-273. doi: 10.1007/s11157-020-09535-z [3] LIN B C, YANG Y P, YANG L L, et al. Congener profiles and process distributions of polychlorinated biphenyls, polychlorinated naphthalenes and chlorinated polycyclic aromatic hydrocarbons from secondary copper smelting[J]. Journal of Hazardous Materials, 2022, 423: 127125. doi: 10.1016/j.jhazmat.2021.127125 [4] JIN R, LIU G R, ZHENG M H, et al. Secondary copper smelters as sources of chlorinated and brominated polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2017, 51(14): 7945-7953. [5] XU X, XIAO R Y, DIONYSIOU D D, et al. Kinetics and mechanisms of the formation of chlorinated and oxygenated polycyclic aromatic hydrocarbons during chlorination[J]. Chemical Engineering Journal, 2018, 351: 248-257. doi: 10.1016/j.cej.2018.06.075 [6] LIU Q Z, XU X, FU J J, et al. Role of hypobromous acid in the transformation of polycyclic aromatic hydrocarbons during chlorination[J]. Water Research, 2021, 207: 117787. doi: 10.1016/j.watres.2021.117787 [7] SUN J L, ZENG H, NI H G. Halogenated polycyclic aromatic hydrocarbons in the environment[J]. Chemosphere, 2013, 90(6): 1751-1759. doi: 10.1016/j.chemosphere.2012.10.094 [8] WANG P C, QI A N, HUANG Q, et al. Spatial and temporal variation, source identification, and toxicity evaluation of brominated/chlorinated/nitrated/oxygenated-PAHs at a heavily industrialized area in Eastern China[J]. Science of the Total Environment, 2022, 822: 153542. doi: 10.1016/j.scitotenv.2022.153542 [9] SANKODA K, KURIBAYASHI T, NOMIYAMA K, et al. Occurrence and source of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in tidal flats of the ariake bay, Japan[J]. Environmental Science & Technology, 2013, 47(13): 7037-7044. [10] SANKODA K, NOMIYAMA K, YONEHARA T, et al. Evidence for in situ production of chlorinated polycyclic aromatic hydrocarbons on tidal flats: Environmental monitoring and laboratory scale experiment[J]. Chemosphere, 2012, 88(5): 542-547. doi: 10.1016/j.chemosphere.2012.03.017 [11] HORII Y, OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4): 651-660. doi: 10.1007/s00244-009-9372-1 [12] YUAN K, QING Q, WANG Y R, et al. Characteristics of chlorinated and brominated polycyclic aromatic hydrocarbons in the Pearl River Estuary[J]. Science of the Total Environment, 2020, 739: 139774. doi: 10.1016/j.scitotenv.2020.139774 [13] SANKODA K, NOMIYAMA K, KURIBAYASHI T, et al. Halogenation of polycyclic aromatic hydrocarbons by photochemical reaction under simulated tidal flat conditions[J]. Polycyclic Aromatic Compounds, 2013, 33(3): 236-253. doi: 10.1080/10406638.2013.770406 [14] SHANKAR R, JUNG J H, LOH A, et al. Environmental significance of lubricant oil: A systematic study of photooxidation and its consequences[J]. Water Research, 2020, 168: 115183. doi: 10.1016/j.watres.2019.115183 [15] SHIRAISHI H, PILKINGTON N H, OTSUKI A, et al. Occurrence of chlorinated polynuclear aromatic hydrocarbons in tap water[J]. Environmental Science & Technology, 1985, 19(7): 585-590. [16] WANG X L, KANG H Y, WU J F. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry[J]. Journal of Separation Science, 2016, 39(9): 1742-1748. doi: 10.1002/jssc.201501286 [17] OHURA T, SAKAKIBARA H, WATANABE I, et al. Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia[J]. Environmental Pollution, 2015, 196: 331-340. doi: 10.1016/j.envpol.2014.10.028 [18] WANG Y J, LIAO R Q, LIU W L, et al. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: Occurrence, distribution, and source apportionment[J]. Environmental Science and Pollution Research, 2017, 24(19): 16241-16252. doi: 10.1007/s11356-017-9193-0 [19] JIN R, ZHENG M H, LAMMEL G, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment[J]. Progress in Energy and Combustion Science, 2020, 76: 100803. doi: 10.1016/j.pecs.2019.100803 [20] XU Y, YANG L L, ZHENG M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants[J]. Environmental Science & Technology, 2018, 52(13): 7334-7342. [21] HUANG C, XU X, WANG D H, et al. The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs)[J]. Chemosphere, 2018, 211: 640-647. doi: 10.1016/j.chemosphere.2018.07.087 [22] LIU Q Z, XU X, LIN L H, et al. Occurrence, health risk assessment and regional impact of parent, halogenated and oxygenated polycyclic aromatic hydrocarbons in tap water[J]. Journal of Hazardous Materials, 2021, 413: 125360. doi: 10.1016/j.jhazmat.2021.125360 [23] OHURA T, AMAGAI T, MAKINO M. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane[J]. Chemosphere, 2008, 70(11): 2110-2117. doi: 10.1016/j.chemosphere.2007.08.064 [24] OHURA T, KITAZAWA A, AMAGAI T, et al. Occurrence, profiles, and photostabilities of chlorinated polycyclic aromatic hydrocarbons associated with particulates in urban air[J]. Environmental Science & Technology, 2005, 39(1): 85-91. [25] CHOUDHRY G G, BARRIE WEBSTER G R. Environmental photochemistry of PCDDs. 2. Quantum yields of the direct phototransformation of 1, 2, 3, 7-tetra-, 1, 3, 6, 8-tetra-, 1, 2, 3, 4, 6, 7, 8-hepta-, and 1, 2, 3, 4, 6, 7, 8, 9-octachlorodibenzo-p-dioxin in aqueous acetonitrile and their sunlight half-lives[J]. Journal of Agricultural and Food Chemistry, 1989, 37(1): 254-261. doi: 10.1021/jf00085a059 [26] OHURA T, MIWA M. Photochlorination of polycyclic aromatic hydrocarbons in acidic brine solution[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(4): 524-529. doi: 10.1007/s00128-015-1723-1 [27] WU S P, SCHWAB J, YANG B Y, et al. Effect of phenolic compounds on photodegradation of anthracene and benzo[a]anthracene in media of different polarity[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2015, 309: 55-64. doi: 10.1016/j.jphotochem.2015.05.004 [28] ERICKSON, PAUL R. Transformation Mechanisms of Organic Micropollutants via Direct and Indirect Photochemistry[D]. Switzerland, Swiss Federal Institute of Technology Zurich, 2014: 103-107. [29] LI W, LI Y Q, XU K. Facile, electrochemical chlorination of graphene from an aqueous NaCl solution[J]. Nano Letters, 2021, 21(2): 1150-1155. doi: 10.1021/acs.nanolett.0c04641 [30] WU Y X, YANG Y, LIU Y Z, et al. Modelling study on the effects of chloride on the degradation of bezafibrate and carbamazepine in sulfate radical-based advanced oxidation processes: Conversion of reactive radicals[J]. Chemical Engineering Journal, 2019, 358: 1332-1341. doi: 10.1016/j.cej.2018.10.125 [31] LIU H, ZHAO H M, QUAN X E, et al. Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation[J]. Environmental Science & Technology, 2009, 43(20): 7712-7717. [32] 胡学锋, 吴蕾, 骆永明. 苯胺在含富里酸/Fe(Ⅲ)高盐水体中的光氯化[J]. 环境化学, 2014, 33(4): 611-616. doi: 10.7524/j.issn.0254-6108.2014.04.003 HU X F, WU L, LUO Y M. Photochlorination of aniline in Fe(Ⅲ)/fulvic acid-containing saline water under simulated solar light irradiation[J]. Environmental Chemistry, 2014, 33(4): 611-616 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.04.003
[33] REMUCAL C K, MANLEY D. Emerging investigators series: The efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment[J]. Environmental Science:Water Research & Technology, 2016, 2(4): 565-579. [34] WU L, HU X F. Photochlorination of aniline in Fe3+-containing saline water under simulated solar light irradiation[J]. Environmental Chemistry, 2012, 9(6): 558. doi: 10.1071/EN12143 [35] LIN Y J, TENG L S, LEE A, et al. Effect of photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls[J]. Chemosphere, 2004, 55(6): 879-884. doi: 10.1016/j.chemosphere.2003.11.059 [36] JI H H, CHANG F, HU X F, et al. Photocatalytic degradation of 2, 4, 6-trichlorophenol over g-C3N4 under visible light irradiation[J]. Chemical Engineering Journal, 2013, 218: 183-190. doi: 10.1016/j.cej.2012.12.033 [37] HU X F, WANG X W, DONG L L, et al. Aniline chlorination by in situ formed Ag–Cl complexes under simulated solar light irradiation[J]. Water Science and Technology, 2015, 71(11): 1679-1685. doi: 10.2166/wst.2015.149 [38] JING L, CHEN B, ZHANG B Y, et al. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration[J]. Marine Pollution Bulletin, 2014, 81(1): 149-156. doi: 10.1016/j.marpolbul.2014.02.003 [39] CHIRON S, MINERO C, VIONE D. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters[J]. Environmental Science & Technology, 2006, 40(19): 5977-5983. [40] TU Z N, QI Y M, TANG X S, et al. Photochemical transformation of anthracene (ANT) in surface soil: Chlorination and hydroxylation[J]. Journal of Hazardous Materials, 2023, 452: 131252. doi: 10.1016/j.jhazmat.2023.131252 [41] YANG M N, ZHANG H J, CHANG F, et al. Self-sensitized photochlorination of benzo[a]pyrene in saline water under simulated solar light irradiation[J]. Journal of Hazardous Materials, 2021, 408: 124445. doi: 10.1016/j.jhazmat.2020.124445 [42] FASNACHT M P, BLOUGH N V. Kinetic analysis of the photodegradation of polycyclic aromatic hydrocarbons in aqueous solution[J]. Aquatic Sciences, 2003, 65(4): 352-358. doi: 10.1007/s00027-003-0680-7 [43] FASNACHT M P, BLOUGH N V. Aqueous photodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2002, 36(20): 4364-4369. [44] KARGAR N, AMANI-GHADIM A R, MATIN A A, et al. Abatement efficiency and fate of EPA-Listed PAHs in aqueous medium under simulated solar and UV-C irradiations, and combined process with TiO2 and H2O2[J]. Ege Journal of Fisheries and Aquatic Sciences, 2020, 37(1): 15-27. doi: 10.12714/egejfas.37.1.03 [45] NIMONKAR Y S, GODAMBE T, KULKARNI A, et al. Oligotrophy vs. copiotrophy in an alkaline and saline habitat of Lonar Lake[J]. Frontiers in Microbiology, 2022, 13: 939984. doi: 10.3389/fmicb.2022.939984 [46] LUO L J, XIAO Z Y, CHEN B W, et al. Natural porphyrins accelerating the phototransformation of benzo[a]pyrene in water[J]. Environmental Science & Technology, 2018, 52(6): 3634-3641. [47] DONG Y X, PENG W Y, LIU Y J, et al. Photochemical origin of reactive radicals and halogenated organic substances in natural waters: A review[J]. Journal of Hazardous Materials, 2021, 401: 123884. doi: 10.1016/j.jhazmat.2020.123884 [48] LI X T, ZHAO H X, QU B C, et al. Photoformation of environmentally persistent free radicals on particulate organic matter in aqueous solution: Role of anthracene and formation mechanism[J]. Chemosphere, 2022, 291: 132815. doi: 10.1016/j.chemosphere.2021.132815 [49] FAN J L, SUN X B, LIU Y D, et al. New insight into environmental photochemistry of PAHs induced by dissolved organic matters: A model of naphthalene in seawater[J]. Process Safety and Environmental Protection, 2022, 161: 325-333. doi: 10.1016/j.psep.2022.03.017 [50] ZHAO S Y, XUE S, ZHANG J M, et al. Dissolved organic matter-mediated photodegradation of anthracene and pyrene in water[J]. Scientific Reports, 2020, 10: 3413. doi: 10.1038/s41598-020-60326-6 [51] SUN X K, BAI J E, DONG D B. Influence factors of enhanced photosensitized degradation of PAHs on soil surface using humic acid under UV irradiation[J]. Polycyclic Aromatic Compounds, 2021, 41(8): 1739-1748. doi: 10.1080/10406638.2019.1695218 [52] WANG J Q, CHEN J W, QIAO X L, et al. DOM from mariculture ponds exhibits higher reactivity on photodegradation of sulfonamide antibiotics than from offshore seawaters[J]. Water Research, 2018, 144: 365-372. doi: 10.1016/j.watres.2018.07.043 [53] ZHOU C Z, XIE Q, WANG J Q, et al. Effects of dissolved organic matter derived from freshwater and seawater on photodegradation of three antiviral drugs[J]. Environmental Pollution, 2020, 258: 113700. doi: 10.1016/j.envpol.2019.113700 [54] ZHANG K, PARKER K M. Halogen radical oxidants in natural and engineered aquatic systems[J]. Environmental Science & Technology, 2018, 52(17): 9579-9594. [55] CARENA L, PUSCASU C G, COMIS S, et al. Environmental photodegradation of emerging contaminants: A re-examination of the importance of triplet-sensitised processes, based on the use of 4-carboxybenzophenone as proxy for the chromophoric dissolved organic matter[J]. Chemosphere, 2019, 237: 124476. doi: 10.1016/j.chemosphere.2019.124476 [56] XIA X H, LI G C, YANG Z F, et al. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen[J]. Environmental Pollution, 2009, 157(4): 1352-1359. doi: 10.1016/j.envpol.2008.11.039 [57] JIA Z, WANG Z C, LU K J. in situ investigation of N deposit effects on polycyclic aromatic hydrocarbons (PAHs) photolysis in snow[J]. Atmospheric Research, 2023, 286: 106676. doi: 10.1016/j.atmosres.2023.106676 [58] RICKER H M, LEONARDI A, NAVEA J G. Reduction and photoreduction of NO2 in humic acid films as a source of HONO, ClNO, N2O, NO X, and organic nitrogen[J]. ACS Earth and Space Chemistry, 2022, 6(12): 3066-3077. doi: 10.1021/acsearthspacechem.2c00282 [59] LI L Z. The reaction mechanism of photoelectrocatalysis on the surface of TiO2 nanotube array electrode[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15: e2511. doi: 10.1002/apj.2511