[1] |
ZHAO X Q, CHENG P F, BORCH T, et al. Humidity induces the formation of radicals and enhances photodegradation of chlorinated-PAHs on Fe(Ⅲ)-montmorillonite[J]. Journal of Hazardous Materials, 2022, 423: 127210. doi: 10.1016/j.jhazmat.2021.127210
|
[2] |
VUONG Q T, THANG P Q, OHURA T, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons in ambient air: Seasonal variation, profiles, potential sources, and size distribution[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(2): 259-273. doi: 10.1007/s11157-020-09535-z
|
[3] |
LIN B C, YANG Y P, YANG L L, et al. Congener profiles and process distributions of polychlorinated biphenyls, polychlorinated naphthalenes and chlorinated polycyclic aromatic hydrocarbons from secondary copper smelting[J]. Journal of Hazardous Materials, 2022, 423: 127125. doi: 10.1016/j.jhazmat.2021.127125
|
[4] |
JIN R, LIU G R, ZHENG M H, et al. Secondary copper smelters as sources of chlorinated and brominated polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2017, 51(14): 7945-7953.
|
[5] |
XU X, XIAO R Y, DIONYSIOU D D, et al. Kinetics and mechanisms of the formation of chlorinated and oxygenated polycyclic aromatic hydrocarbons during chlorination[J]. Chemical Engineering Journal, 2018, 351: 248-257. doi: 10.1016/j.cej.2018.06.075
|
[6] |
LIU Q Z, XU X, FU J J, et al. Role of hypobromous acid in the transformation of polycyclic aromatic hydrocarbons during chlorination[J]. Water Research, 2021, 207: 117787. doi: 10.1016/j.watres.2021.117787
|
[7] |
SUN J L, ZENG H, NI H G. Halogenated polycyclic aromatic hydrocarbons in the environment[J]. Chemosphere, 2013, 90(6): 1751-1759. doi: 10.1016/j.chemosphere.2012.10.094
|
[8] |
WANG P C, QI A N, HUANG Q, et al. Spatial and temporal variation, source identification, and toxicity evaluation of brominated/chlorinated/nitrated/oxygenated-PAHs at a heavily industrialized area in Eastern China[J]. Science of the Total Environment, 2022, 822: 153542. doi: 10.1016/j.scitotenv.2022.153542
|
[9] |
SANKODA K, KURIBAYASHI T, NOMIYAMA K, et al. Occurrence and source of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in tidal flats of the ariake bay, Japan[J]. Environmental Science & Technology, 2013, 47(13): 7037-7044.
|
[10] |
SANKODA K, NOMIYAMA K, YONEHARA T, et al. Evidence for in situ production of chlorinated polycyclic aromatic hydrocarbons on tidal flats: Environmental monitoring and laboratory scale experiment[J]. Chemosphere, 2012, 88(5): 542-547. doi: 10.1016/j.chemosphere.2012.03.017
|
[11] |
HORII Y, OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4): 651-660. doi: 10.1007/s00244-009-9372-1
|
[12] |
YUAN K, QING Q, WANG Y R, et al. Characteristics of chlorinated and brominated polycyclic aromatic hydrocarbons in the Pearl River Estuary[J]. Science of the Total Environment, 2020, 739: 139774. doi: 10.1016/j.scitotenv.2020.139774
|
[13] |
SANKODA K, NOMIYAMA K, KURIBAYASHI T, et al. Halogenation of polycyclic aromatic hydrocarbons by photochemical reaction under simulated tidal flat conditions[J]. Polycyclic Aromatic Compounds, 2013, 33(3): 236-253. doi: 10.1080/10406638.2013.770406
|
[14] |
SHANKAR R, JUNG J H, LOH A, et al. Environmental significance of lubricant oil: A systematic study of photooxidation and its consequences[J]. Water Research, 2020, 168: 115183. doi: 10.1016/j.watres.2019.115183
|
[15] |
SHIRAISHI H, PILKINGTON N H, OTSUKI A, et al. Occurrence of chlorinated polynuclear aromatic hydrocarbons in tap water[J]. Environmental Science & Technology, 1985, 19(7): 585-590.
|
[16] |
WANG X L, KANG H Y, WU J F. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry[J]. Journal of Separation Science, 2016, 39(9): 1742-1748. doi: 10.1002/jssc.201501286
|
[17] |
OHURA T, SAKAKIBARA H, WATANABE I, et al. Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia[J]. Environmental Pollution, 2015, 196: 331-340. doi: 10.1016/j.envpol.2014.10.028
|
[18] |
WANG Y J, LIAO R Q, LIU W L, et al. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: Occurrence, distribution, and source apportionment[J]. Environmental Science and Pollution Research, 2017, 24(19): 16241-16252. doi: 10.1007/s11356-017-9193-0
|
[19] |
JIN R, ZHENG M H, LAMMEL G, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment[J]. Progress in Energy and Combustion Science, 2020, 76: 100803. doi: 10.1016/j.pecs.2019.100803
|
[20] |
XU Y, YANG L L, ZHENG M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants[J]. Environmental Science & Technology, 2018, 52(13): 7334-7342.
|
[21] |
HUANG C, XU X, WANG D H, et al. The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs)[J]. Chemosphere, 2018, 211: 640-647. doi: 10.1016/j.chemosphere.2018.07.087
|
[22] |
LIU Q Z, XU X, LIN L H, et al. Occurrence, health risk assessment and regional impact of parent, halogenated and oxygenated polycyclic aromatic hydrocarbons in tap water[J]. Journal of Hazardous Materials, 2021, 413: 125360. doi: 10.1016/j.jhazmat.2021.125360
|
[23] |
OHURA T, AMAGAI T, MAKINO M. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane[J]. Chemosphere, 2008, 70(11): 2110-2117. doi: 10.1016/j.chemosphere.2007.08.064
|
[24] |
OHURA T, KITAZAWA A, AMAGAI T, et al. Occurrence, profiles, and photostabilities of chlorinated polycyclic aromatic hydrocarbons associated with particulates in urban air[J]. Environmental Science & Technology, 2005, 39(1): 85-91.
|
[25] |
CHOUDHRY G G, BARRIE WEBSTER G R. Environmental photochemistry of PCDDs. 2. Quantum yields of the direct phototransformation of 1, 2, 3, 7-tetra-, 1, 3, 6, 8-tetra-, 1, 2, 3, 4, 6, 7, 8-hepta-, and 1, 2, 3, 4, 6, 7, 8, 9-octachlorodibenzo-p-dioxin in aqueous acetonitrile and their sunlight half-lives[J]. Journal of Agricultural and Food Chemistry, 1989, 37(1): 254-261. doi: 10.1021/jf00085a059
|
[26] |
OHURA T, MIWA M. Photochlorination of polycyclic aromatic hydrocarbons in acidic brine solution[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(4): 524-529. doi: 10.1007/s00128-015-1723-1
|
[27] |
WU S P, SCHWAB J, YANG B Y, et al. Effect of phenolic compounds on photodegradation of anthracene and benzo[a]anthracene in media of different polarity[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2015, 309: 55-64. doi: 10.1016/j.jphotochem.2015.05.004
|
[28] |
ERICKSON, PAUL R. Transformation Mechanisms of Organic Micropollutants via Direct and Indirect Photochemistry[D]. Switzerland, Swiss Federal Institute of Technology Zurich, 2014: 103-107.
|
[29] |
LI W, LI Y Q, XU K. Facile, electrochemical chlorination of graphene from an aqueous NaCl solution[J]. Nano Letters, 2021, 21(2): 1150-1155. doi: 10.1021/acs.nanolett.0c04641
|
[30] |
WU Y X, YANG Y, LIU Y Z, et al. Modelling study on the effects of chloride on the degradation of bezafibrate and carbamazepine in sulfate radical-based advanced oxidation processes: Conversion of reactive radicals[J]. Chemical Engineering Journal, 2019, 358: 1332-1341. doi: 10.1016/j.cej.2018.10.125
|
[31] |
LIU H, ZHAO H M, QUAN X E, et al. Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation[J]. Environmental Science & Technology, 2009, 43(20): 7712-7717.
|
[32] |
胡学锋, 吴蕾, 骆永明. 苯胺在含富里酸/Fe(Ⅲ)高盐水体中的光氯化[J]. 环境化学, 2014, 33(4): 611-616. doi: 10.7524/j.issn.0254-6108.2014.04.003
HU X F, WU L, LUO Y M. Photochlorination of aniline in Fe(Ⅲ)/fulvic acid-containing saline water under simulated solar light irradiation[J]. Environmental Chemistry, 2014, 33(4): 611-616 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.04.003
|
[33] |
REMUCAL C K, MANLEY D. Emerging investigators series: The efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment[J]. Environmental Science:Water Research & Technology, 2016, 2(4): 565-579.
|
[34] |
WU L, HU X F. Photochlorination of aniline in Fe3+-containing saline water under simulated solar light irradiation[J]. Environmental Chemistry, 2012, 9(6): 558. doi: 10.1071/EN12143
|
[35] |
LIN Y J, TENG L S, LEE A, et al. Effect of photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls[J]. Chemosphere, 2004, 55(6): 879-884. doi: 10.1016/j.chemosphere.2003.11.059
|
[36] |
JI H H, CHANG F, HU X F, et al. Photocatalytic degradation of 2, 4, 6-trichlorophenol over g-C3N4 under visible light irradiation[J]. Chemical Engineering Journal, 2013, 218: 183-190. doi: 10.1016/j.cej.2012.12.033
|
[37] |
HU X F, WANG X W, DONG L L, et al. Aniline chlorination by in situ formed Ag–Cl complexes under simulated solar light irradiation[J]. Water Science and Technology, 2015, 71(11): 1679-1685. doi: 10.2166/wst.2015.149
|
[38] |
JING L, CHEN B, ZHANG B Y, et al. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration[J]. Marine Pollution Bulletin, 2014, 81(1): 149-156. doi: 10.1016/j.marpolbul.2014.02.003
|
[39] |
CHIRON S, MINERO C, VIONE D. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters[J]. Environmental Science & Technology, 2006, 40(19): 5977-5983.
|
[40] |
TU Z N, QI Y M, TANG X S, et al. Photochemical transformation of anthracene (ANT) in surface soil: Chlorination and hydroxylation[J]. Journal of Hazardous Materials, 2023, 452: 131252. doi: 10.1016/j.jhazmat.2023.131252
|
[41] |
YANG M N, ZHANG H J, CHANG F, et al. Self-sensitized photochlorination of benzo[a]pyrene in saline water under simulated solar light irradiation[J]. Journal of Hazardous Materials, 2021, 408: 124445. doi: 10.1016/j.jhazmat.2020.124445
|
[42] |
FASNACHT M P, BLOUGH N V. Kinetic analysis of the photodegradation of polycyclic aromatic hydrocarbons in aqueous solution[J]. Aquatic Sciences, 2003, 65(4): 352-358. doi: 10.1007/s00027-003-0680-7
|
[43] |
FASNACHT M P, BLOUGH N V. Aqueous photodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2002, 36(20): 4364-4369.
|
[44] |
KARGAR N, AMANI-GHADIM A R, MATIN A A, et al. Abatement efficiency and fate of EPA-Listed PAHs in aqueous medium under simulated solar and UV-C irradiations, and combined process with TiO2 and H2O2[J]. Ege Journal of Fisheries and Aquatic Sciences, 2020, 37(1): 15-27. doi: 10.12714/egejfas.37.1.03
|
[45] |
NIMONKAR Y S, GODAMBE T, KULKARNI A, et al. Oligotrophy vs. copiotrophy in an alkaline and saline habitat of Lonar Lake[J]. Frontiers in Microbiology, 2022, 13: 939984. doi: 10.3389/fmicb.2022.939984
|
[46] |
LUO L J, XIAO Z Y, CHEN B W, et al. Natural porphyrins accelerating the phototransformation of benzo[a]pyrene in water[J]. Environmental Science & Technology, 2018, 52(6): 3634-3641.
|
[47] |
DONG Y X, PENG W Y, LIU Y J, et al. Photochemical origin of reactive radicals and halogenated organic substances in natural waters: A review[J]. Journal of Hazardous Materials, 2021, 401: 123884. doi: 10.1016/j.jhazmat.2020.123884
|
[48] |
LI X T, ZHAO H X, QU B C, et al. Photoformation of environmentally persistent free radicals on particulate organic matter in aqueous solution: Role of anthracene and formation mechanism[J]. Chemosphere, 2022, 291: 132815. doi: 10.1016/j.chemosphere.2021.132815
|
[49] |
FAN J L, SUN X B, LIU Y D, et al. New insight into environmental photochemistry of PAHs induced by dissolved organic matters: A model of naphthalene in seawater[J]. Process Safety and Environmental Protection, 2022, 161: 325-333. doi: 10.1016/j.psep.2022.03.017
|
[50] |
ZHAO S Y, XUE S, ZHANG J M, et al. Dissolved organic matter-mediated photodegradation of anthracene and pyrene in water[J]. Scientific Reports, 2020, 10: 3413. doi: 10.1038/s41598-020-60326-6
|
[51] |
SUN X K, BAI J E, DONG D B. Influence factors of enhanced photosensitized degradation of PAHs on soil surface using humic acid under UV irradiation[J]. Polycyclic Aromatic Compounds, 2021, 41(8): 1739-1748. doi: 10.1080/10406638.2019.1695218
|
[52] |
WANG J Q, CHEN J W, QIAO X L, et al. DOM from mariculture ponds exhibits higher reactivity on photodegradation of sulfonamide antibiotics than from offshore seawaters[J]. Water Research, 2018, 144: 365-372. doi: 10.1016/j.watres.2018.07.043
|
[53] |
ZHOU C Z, XIE Q, WANG J Q, et al. Effects of dissolved organic matter derived from freshwater and seawater on photodegradation of three antiviral drugs[J]. Environmental Pollution, 2020, 258: 113700. doi: 10.1016/j.envpol.2019.113700
|
[54] |
ZHANG K, PARKER K M. Halogen radical oxidants in natural and engineered aquatic systems[J]. Environmental Science & Technology, 2018, 52(17): 9579-9594.
|
[55] |
CARENA L, PUSCASU C G, COMIS S, et al. Environmental photodegradation of emerging contaminants: A re-examination of the importance of triplet-sensitised processes, based on the use of 4-carboxybenzophenone as proxy for the chromophoric dissolved organic matter[J]. Chemosphere, 2019, 237: 124476. doi: 10.1016/j.chemosphere.2019.124476
|
[56] |
XIA X H, LI G C, YANG Z F, et al. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen[J]. Environmental Pollution, 2009, 157(4): 1352-1359. doi: 10.1016/j.envpol.2008.11.039
|
[57] |
JIA Z, WANG Z C, LU K J. in situ investigation of N deposit effects on polycyclic aromatic hydrocarbons (PAHs) photolysis in snow[J]. Atmospheric Research, 2023, 286: 106676. doi: 10.1016/j.atmosres.2023.106676
|
[58] |
RICKER H M, LEONARDI A, NAVEA J G. Reduction and photoreduction of NO2 in humic acid films as a source of HONO, ClNO, N2O, NO X, and organic nitrogen[J]. ACS Earth and Space Chemistry, 2022, 6(12): 3066-3077. doi: 10.1021/acsearthspacechem.2c00282
|
[59] |
LI L Z. The reaction mechanism of photoelectrocatalysis on the surface of TiO2 nanotube array electrode[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15: e2511. doi: 10.1002/apj.2511
|