-
为应对全球气候变化带来的严峻挑战,我国于2020年提出“碳达峰、碳中和”的目标,大力倡导节能减排,推动产业发展绿色低碳转型. 在此背景下,污水处理行业也逐渐从传统的“高能耗和高碳排放型”转向“资源回收和能源节约型”. 因此,如何提高污水资源和能源回收效率成为国内外研究者关注的热点与难点[1].
厌氧膜生物反应器(anaerobic membrane bioreactor, AnMBR)将厌氧消化与膜处理技术有机结合,不仅实现了系统中功能微生物的长时间赋存,还克服了高水力负荷条件下污泥流失问题[2],具有污染物去除效率高[3]、占地面积小[4]、运行稳定性强[5]等优点. 更重要的是,AnMBR将有机污染物转化为清洁能源甲烷[6],甲烷可作为能源原位供污水厂发电和产热使用,对污水厂减污降碳协同增效、实现碳中和目标具有重要意义. 然而,在AnMBR实际应用中,除了引发广泛关注的膜污染问题[7 − 8],最近研究还聚焦于甲烷溶解致使能源回收效率低的难题. AnMBR处理污水后,28%—58%的甲烷会以溶解态的形式随出水排放流失[9],造成了大量能源浪费和经济损失[10]. 同时,释放的甲烷会产生严重的温室效应,其增温潜势在20年尺度范围内是二氧化碳的84倍[11]. 因此,亟需制定AnMBR厌氧废水中溶解甲烷的回收策略,将其转化为产电能源或脱氮碳源原位利用[12](图1).
本文阐述了AnMBR出水中溶解甲烷的产生现状和形成机理,研究了温度、污泥龄(sludge retention time, SRT)、水力停留时间(hydraulic retention time, HRT)、有机负荷(organic loading rate, OLR)等主要工艺参数对AnMBR出水中溶解甲烷浓度的影响,阐述了膜接触器技术、反硝化厌氧甲烷氧化技术、微生物燃料电池等回收溶解甲烷技术的应用潜力. 在此基础上评估了AnMBR处理污水全过程的碳足迹,并针对AnMBR出水回收溶解甲烷的未来研究进行了展望,为双碳背景下AnMBR技术实现能量盈余和资源回收提供理论依据和技术参考.
厌氧膜生物反应器出水溶解甲烷回收研究进展
Research progress of dissolved methane recovery from anaerobic membrane bioreactor effluent
-
摘要: 厌氧膜生物反应器(AnMBR)是一种能耗低、处理效率高的污水处理技术. 然而,受温度、污泥龄、水力停留时间等工艺参数的影响,生成的甲烷大量溶解在出水中形成过饱和溶液,并随出水排放至环境中,造成了能源物质损失和温室气体排放. 若将溶解甲烷有效回收,其可作为补充能源或脱氮碳源原位利用,具有重要的应用价值. 为了实现AnMBR出水溶解甲烷有效回收或再利用,本文阐述了目前3种主流回收溶解甲烷技术(膜回收技术、反硝化厌氧甲烷氧化技术、微生物燃料电池)的原理、回收效能和局限性. 在此基础上,评估了AnMBR处理污水全过程的碳足迹,并针对AnMBR出水溶解甲烷回收的未来研究进行了展望. 本研究可为双碳背景下AnMBR技术实现能量盈余和资源回收提供理论依据和技术参考.Abstract: Anaerobic membrane bioreactor (AnMBR) is a wastewater treatment technology with low energy consumption and high treatment efficiency. However, due to the influences of process parameters such as temperature, sludge retention time, and hydraulic retention time, large amounts of generated methane are dissolved in the effluent and ultimately discharged into the environment in a supersaturated state, which not only results in serious energy loss, but also contributes to greenhouse gas emissions. The dissolved methane in the effluent can potentially be utilized as supplementary energy or a carbon source for in-situ nitrogen removal, offering critical application value. In order to effectively recover or reuse dissolved methane from the AnMBR effluent, this work explores the mechanism, efficacy, and limitations of three mainstream recovery technologies, including membrane recovery technology, denitrification anaerobic methane oxidation technology, and microbial fuel cell. Furthermore, the carbon footprint of the whole process of AnMBR wastewater treatment is evaluated, and the future research of dissolved methane recovery from AnMBR effluent is prospected. This work provides theoretical basis and technical guidance for achieving energy surplus and resource recovery of AnMBR technology, aligning the goals of carbon peaking and carbon neutrality.
-
表 1 AnMBR处理不同来源污水的甲烷产量
Table 1. Methane yield from AnMBR for treating various types of wastewater
废水类型
Type of
wastewater废水来源
Source of
wastewater规模/L
Scale进水COD浓度/
(mg·L−1)
Influent COD
concentration温度/℃
TemperatureCOD去除率/%
COD removal rate甲烷产量/
(L·g−1)
Methane yield溶解甲烷占比/%
Proportion参考文献
Reference市政污水 合成废水 2 400 35 98 0.3 NA [28] 合成废水 10 1000 15 94±2 0.19 18 [29] 实际废水 16 373±148 30 83±1 NA NA [30] 实际废水 20 200—400 25—30 85 0.31 26 [31] 实际废水 20 412±88 15 90.5 0.12—0.23 17—25 [32] 实际废水 120 610±260 NA 88±7 0.14±0.06 42 [33] 实际废水 5000 416 25 91 0.19—0.21 20—22 [34] 工业废水 食品废水 2100 755— 1403 10—27 87 0.07—0.169 NA [35] 甲醇废水 10 1286.5 37.5 89.8±1.1 NA 3 [36] 垃圾渗滤液 4 7014 NA 46—64 0.12—0.35 NA [37] 麦芽糖厂 4.5 5002 ±24236±1 90.2—94.1 0.308—0.345 NA [19] 注:NA:未知值. Note:NA:Unknown value. 表 2 膜接触器回收AnMBR出水中溶解甲烷的效能
Table 2. Efficiency of recovering dissolved methane from AnMBR effluent by membrane contractor
废水来源
Source of
wastewater膜结构
Membrane
structure温度/℃
Temperature运行模式
Operation mode回收效率/%
Recovery rate提升甲烷回收
Methods to enhance
methane recovery参考文献
Reference合成废水 改性PDMS致密膜 25 壳程 NA 89—96 膜修饰 [64] 合成废水 PP微孔膜 25 管程 吹扫气体 95.7 增加液体和气体流速 [54] 真实废水 PDMS致密膜 30 壳程 真空 85 升高温度;降低QL:A [52] 真实废水 PDMS致密膜 18 壳程 真空 80 提高真空压力
降低液体流速[53] 真实废水 复合膜 NA 管程 吹扫气体 NA 复合膜 [65] 真实废水 改性PVDF微孔膜 23.5 管程 吹扫气体 39.97 降低液体流速 [63] 合成废水 PP微孔膜 25 管程 吹扫气体 98.9 降低液体流速 [57] 注:合成废水:指配制的饱和甲烷溶液;真实废水:指真实AnMBR出水;QL:A指液流量/膜面积比.
Note: Synthetic wastewater: refers to the prepared saturated methane solution; Real wastewater: refers to real AnMBR effluent; QL:A refers to the fluid flow/membrane area ratio.表 3 不同DAMO生物反应器去除溶解甲烷和氮类污染物效能
Table 3. Efficiency of removing dissolved methane and nitrogen pollutants via different DAMO bioreactors
生物反应器类型
Type of
bioreactor规模/L
Scale接种微生物
Inoculation废水类型
Type of wastewater溶解甲烷去除效果
Dissolved methane
removal effect含氮物质去除效果
Removal effect of
nitrogenous substances参考文献
ReferenceSBR 2 DAMO 合成废水 NA 7.7 mg·L−1·d−1 硝酸盐 [83] SBR 2 DAMO 真实废水 0.31 mgCOD·L−1·d−1 NA NA [84] SBR 5.3—6.7 DAMO 真实废水 NA 37.8 mg·L−1·d−1 亚硝酸盐 [77] MBfR 2.3 DAMO+Anammox 合成废水 85% 99% 总氮 [85] MBfR 1.15 DAMO+Anammox 合成废水 124 mg·L−1·d−1 250 mg·L−1·d−1 总氮 [78] MBfR 1000 DAMO+Anammox 合成废水 93.4% 95.9% 总氮 [38] MBfR 1000 DAMO+Anammox 合成废水 98.6% 92.8% 总氮 [86] MGSR 0.8 DAMO+Anammox 合成废水 975 mg·L−1·d−1 16530 mg·L−1·d−1总氮 [87] MGSR 0.3 DAMO+Anammox 合成废水 30% 98% 总氮 [80] -
[1] YOSHIDA H, MØNSTER J, SCHEUTZ C. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant[J]. Water Research, 2014, 61: 108-118. doi: 10.1016/j.watres.2014.05.014 [2] 姜萌萌, 林敏, 郑晓宇, 等. 高温厌氧膜生物反应器处理餐厨废水的启动[J]. 中国环境科学, 2020, 40(12): 5318-5324. JIANG M M, LIN M, ZHENG X Y, et al. Start-up operation of anaerobic membrane bioreactor treating food wastewater under thermophilic condition[J]. China Environmental Science, 2020, 40(12): 5318-5324 (in Chinese).
[3] 王潇, 肖小兰, 许之扬, 等. AnMBR对高浓度餐厨废水的处理效能[J]. 环境工程学报, 2022, 16(11): 3728-3738. WANG X, XIAO X L, XU Z Y, et al. Performance of an anaerobic membrane bioreactor treating high concentration kitchen wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(11): 3728-3738 (in Chinese).
[4] KONG Z, LI L, XUE Y, et al. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review[J]. Journal of Cleaner Production, 2019, 231: 913-927. doi: 10.1016/j.jclepro.2019.05.233 [5] MUÑOZ SIERRA J D, OOSTERKAMP M J, WANG W, et al. Comparative performance of upflow anaerobic sludge blanket reactor and anaerobic membrane bioreactor treating phenolic wastewater: Overcoming high salinity[J]. Chemical Engineering Journal, 2019, 366: 480-490. doi: 10.1016/j.cej.2019.02.097 [6] KONG Z, XUE Y, HAO T W, et al. Carbon-neutral treatment of N, N-dimethylformamide-containing industrial wastewater by anaerobic membrane bioreactor (AnMBR): Bio-energy recovery and CO2 emission reduction[J]. Bioresource Technology, 2022, 358: 127396. doi: 10.1016/j.biortech.2022.127396 [7] 牛承鑫, 潘阳, 陆雪琴, 等. 厌氧膜生物反应器(AnMBR)膜污染过程及控制方法研究进展[J]. 环境化学, 2019, 38(12): 2851-2859. NIU C X, PAN Y, LU X Q, et al. Research progress in membrane fouling process and control method of anaerobic membrane bioreactor (AnMBR)[J]. Environmental Chemistry, 2019, 38(12): 2851-2859 (in Chinese).
[8] 戴金金, 牛承鑫, 潘阳, 等. 厌氧膜生物反应器污泥处理与膜污染控制研究进展[J]. 环境化学, 2020, 39(8): 2154-2165. DAI J J, NIU C X, PAN Y, et al. Overview of anaerobic membrane bioreactors for sludge treatment and membrane fouling control strategies[J]. Environmental Chemistry, 2020, 39(8): 2154-2165 (in Chinese).
[9] YEO H, AN J, REID R, et al. Contribution of liquid/gas mass-transfer limitations to dissolved methane oversaturation in anaerobic treatment of dilute wastewater[J]. Environmental Science & Technology, 2015, 49(17): 10366-10372. [10] BECKER A M, YU K, STADLER L B, et al. Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies[J]. Bioresource Technology, 2017, 223: 131-140. doi: 10.1016/j.biortech.2016.10.031 [11] CAKIR F Y, STENSTROM M K. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology[J]. Water Research, 2005, 39(17): 4197-4203. doi: 10.1016/j.watres.2005.07.042 [12] 郝晓地, 孙思辈, 李季, 等. 甲烷氧化耦合污水脱氮研究进展[J]. 环境科学学报, 2023, 43(3): 1-15. HAO X D, SUN S B, LI J, et al. Research advances of methane oxidation coupled to nitrogen removal of wastewater[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 1-15 (in Chinese).
[13] MAAZ M, YASIN M, ASLAM M, et al. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations[J]. Bioresource Technology, 2019, 283: 358-372. doi: 10.1016/j.biortech.2019.03.061 [14] CHEN C, GUO W S, NGO H H, et al. Challenges in biogas production from anaerobic membrane bioreactors[J]. Renewable Energy, 2016, 98: 120-134. doi: 10.1016/j.renene.2016.03.095 [15] PAN X F, ANGELIDAKI I, ALVARADO-MORALES M, et al. Methane production from formate, acetate and H2/CO2;focusing on kinetics and microbial characterization[J]. Bioresource Technology, 2016, 218: 796-806. doi: 10.1016/j.biortech.2016.07.032 [16] VELASCO P, JEGATHEESAN V, THANGAVADIVEL K, et al. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents[J]. Chemosphere, 2021, 278: 130448. doi: 10.1016/j.chemosphere.2021.130448 [17] SMITH A L, STADLER L B, LOVE N G, et al. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review[J]. Bioresource Technology, 2012, 122: 149-159. doi: 10.1016/j.biortech.2012.04.055 [18] LEI Z, YANG S M, LI Y Y, et al. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives[J]. Bioresource Technology, 2018, 267: 756-768. doi: 10.1016/j.biortech.2018.07.050 [19] MALEKI E, CATALAN L J, LIAO B Q. Effect of organic loading rate on the performance of a submerged anaerobic membrane bioreactor (SAnMBR) for malting wastewater treatment and biogas production[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(6): 1636-1647. [20] ISSA L, EL KIK O, EL-FADEL M. AnMBR technology for landfill leachate treatment: A framework towards improved performance[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(2): 517-538. doi: 10.1007/s11157-022-09615-2 [21] VINARDELL S, ASTALS S, PECES M, et al. Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109936. doi: 10.1016/j.rser.2020.109936 [22] GUO Q, YANG Z C, ZHANG B L, et al. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Frontiers of Environmental Science & Engineering, 2022, 16(6): 71. [23] EVANS P J, PARAMESWARAN P, LIM K, et al. A comparative pilot-scale evaluation of gas-sparged and granular activated carbon-fluidized anaerobic membrane bioreactors for domestic wastewater treatment[J]. Bioresource Technology, 2019, 288: 120949. doi: 10.1016/j.biortech.2019.01.072 [24] RONG C, WANG T J, LUO Z B, et al. Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater[J]. Bioresource Technology, 2022, 354: 127167. doi: 10.1016/j.biortech.2022.127167 [25] SONG X Y, LUO W H, McDONALD J, et al. Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling[J]. Bioresource Technology, 2018, 250: 171-177. doi: 10.1016/j.biortech.2017.11.021 [26] MUÑOZ SIERRA J D, LAFITA C, GABALDÓN C, et al. Trace metals supplementation in anaerobic membrane bioreactors treating highly saline phenolic wastewater[J]. Bioresource Technology, 2017, 234: 106-114. doi: 10.1016/j.biortech.2017.03.032 [27] LIU Z H, YIN H, DANG Z, et al. Dissolved methane: A hurdle for anaerobic treatment of municipal wastewater[J]. Environmental Science & Technology, 2014, 48(2): 889-890. [28] WEI C H, HARB M, AMY G, et al. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment[J]. Bioresource Technology, 2014, 166: 326-334. doi: 10.1016/j.biortech.2014.05.053 [29] DOLEJS P, OZCAN O, BAIR R, et al. Effect of psychrophilic temperature shocks on a gas-lift anaerobic membrane bioreactor (Gl-AnMBR) treating synthetic domestic wastewater[J]. Journal of Water Process Engineering, 2017, 16: 108-114. doi: 10.1016/j.jwpe.2016.12.005 [30] FOGLIA A, AKYOL Ç, FRISON N, et al. Long-term operation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating high salinity low loaded municipal wastewater in real environment[J]. Separation and Purification Technology, 2020, 236: 116279. doi: 10.1016/j.seppur.2019.116279 [31] DU R D, HU Y S, NITTA S, et al. Material mass balance and elemental flow analysis in a submerged anaerobic membrane bioreactor for municipal wastewater treatment towards low-carbon operation and resource recovery[J]. The Science of the Total Environment, 2022, 852: 158586. doi: 10.1016/j.scitotenv.2022.158586 [32] JI J Y, DU R D, NI J L, et al. Submerged anaerobic membrane bioreactor applied for mainstream municipal wastewater treatment at a low temperature: Sludge yield, energy balance and membrane filtration behaviors[J]. Journal of Cleaner Production, 2022, 355: 131831. doi: 10.1016/j.jclepro.2022.131831 [33] LIM K, EVANS P J, PARAMESWARAN P. Long-term performance of a pilot-scale gas-sparged anaerobic membrane bioreactor under ambient temperatures for holistic wastewater treatment[J]. Environmental Science & Technology, 2019, 53(13): 7347-7354. [34] KONG Z, WU J, RONG C, et al. Sludge yield and degradation of suspended solids by a large pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater at 25 ℃[J]. Science of the Total Environment, 2021, 759: 143526. doi: 10.1016/j.scitotenv.2020.143526 [35] ROBLES Á, JIMÉNEZ-BENÍTEZ A, GIMÉNEZ J B, et al. A semi-industrial scale AnMBR for municipal wastewater treatment at ambient temperature: Performance of the biological process[J]. Water Research, 2022, 215: 118249. doi: 10.1016/j.watres.2022.118249 [36] LU X Q, ZHENG C T, ZHEN G Y, et al. Roles of colloidal particles and soluble biopolymers in long-term performance and fouling behaviors of submerged anaerobic membrane bioreactor treating methanolic wastewater[J]. Journal of Cleaner Production, 2021, 290: 125816. doi: 10.1016/j.jclepro.2021.125816 [37] CIRIK K, GOCER S. Performance of anaerobic membrane bioreactor treating landfill leachate[J]. Journal of Environmental Health Science and Engineering, 2020, 18(2): 383-393. doi: 10.1007/s40201-019-00376-9 [38] CHEN X M, GUO J H, XIE G J, et al. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility[J]. Water Research, 2015, 85: 295-303. doi: 10.1016/j.watres.2015.08.046 [39] MAGEN C, LAPHAM L L, POHLMAN J W, et al. A simple headspace equilibration method for measuring dissolved methane[J]. Limnology and Oceanography:Methods, 2014, 12(9): 637-650. doi: 10.4319/lom.2014.12.637 [40] FERRARI F, BALCAZAR J L, RODRIGUEZ-RODA I, et al. Anaerobic membrane bioreactor for biogas production from concentrated sewage produced during sewer mining[J]. The Science of the Total Environment, 2019, 670: 993-1000. doi: 10.1016/j.scitotenv.2019.03.218 [41] WU P H, NG K K, HONG P K A, et al. Treatment of low-strength wastewater at mesophilic and psychrophilic conditions using immobilized anaerobic biomass[J]. Chemical Engineering Journal, 2017, 311: 46-54. doi: 10.1016/j.cej.2016.11.077 [42] MARTINEZ-SOSA D, HELMREICH B, NETTER T, et al. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions[J]. Bioresource Technology, 2011, 102(22): 10377-10385. doi: 10.1016/j.biortech.2011.09.012 [43] PLEVRI A, MAMAIS D, NOUTSOPOULOS C. Anaerobic MBR technology for treating municipal wastewater at ambient temperatures[J]. Chemosphere, 2021, 275: 129961. doi: 10.1016/j.chemosphere.2021.129961 [44] SMITH A L, SKERLOS S J, RASKIN L. Anaerobic membrane bioreactor treatment of domestic wastewater at psychrophilic temperatures ranging from 15 ℃ to 3 ℃[J]. Environmental Science:Water Research & Technology, 2015, 1(1): 56-64. [45] SMITH A L, SKERLOS S J, RASKIN L. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment[J]. Microbial Biotechnology, 2015, 8(5): 883-894. doi: 10.1111/1751-7915.12311 [46] SECO A, MATEO O, ZAMORANO-LóPEZ N, et al. Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology[J]. Environmental Science:Water Research & Technology, 2018, 4(11): 1877-1887. [47] PRETEL R, MOÑINO P, ROBLES A, et al. Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste[J]. Journal of Environmental Management, 2016, 179: 83-92. [48] YEO H, LEE H S. The effect of solids retention time on dissolved methane concentration in anaerobic membrane bioreactors[J]. Environmental Technology, 2013, 34(13/14/15/16): 2105-2112. [49] YANG Y, ZANG Y, HU Y S, et al. Upflow anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment at room temperature and short HRTs: Process characteristics and practical applicability[J]. Chemical Engineering Journal, 2020, 383: 123186. doi: 10.1016/j.cej.2019.123186 [50] 鲁斌, 龚凯, 蒋红与, 等. AnMBR用于餐厨垃圾和剩余污泥共发酵的性能研究[J]. 中国环境科学, 2021, 41(5): 2290-2298. LU B, GONG K, JIANG H Y, et al. Performance of AnMBR for the co-digestion of food waste and waste activity sludge[J]. China Environmental Science, 2021, 41(5): 2290-2298 (in Chinese).
[51] SHIN C, McCARTY P L, BAE J. Importance of dissolved methane management when anaerobically treating low-strength wastewaters[J]. Current Organic Chemistry, 2016, 20(26): 2810-2816. doi: 10.2174/1385272820666160517155831 [52] SANCHIS-PERUCHO P, ROBLES Á, DURÁN F, et al. Widening the applicability of AnMBR for urban wastewater treatment through PDMS membranes for dissolved methane capture: Effect of temperature and hydrodynamics[J]. Journal of Environmental Management, 2021, 287: 112344. doi: 10.1016/j.jenvman.2021.112344 [53] SANCHIS-PERUCHO P, ROBLES Á, DURÁN F, et al. PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents[J]. Journal of Membrane Science, 2020, 604: 118070. doi: 10.1016/j.memsci.2020.118070 [54] SOHAIB Q, KALAKECH C, CHARMETTE C, et al. Hollow-fiber membrane contactor for biogas recovery from real anaerobic membrane bioreactor permeate[J]. Membranes, 2022, 12(2): 112. doi: 10.3390/membranes12020112 [55] VELASCO P, JEGATHEESAN V, OTHMAN M. Recovery of dissolved methane from anaerobic membrane bioreactor using degassing membrane contactors[J]. Frontiers in Environmental Science, 2018, 6: 151. doi: 10.3389/fenvs.2018.00151 [56] KALAKECH C, SOHAIB Q, LESAGE G, et al. Progress and challenges in recovering dissolved methane from anaerobic bioreactor permeate using membrane contactors: A comprehensive review[J]. Journal of Water Process Engineering, 2022, 50: 103218. doi: 10.1016/j.jwpe.2022.103218 [57] COOKNEY J, MCLEOD A, MATHIOUDAKIS V, et al. Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors[J]. Journal of Membrane Science, 2016, 502: 141-150. doi: 10.1016/j.memsci.2015.12.037 [58] HENARES M, FERRERO P, SAN-VALERO P, et al. Performance of a polypropylene membrane contactor for the recovery of dissolved methane from anaerobic effluents: Mass transfer evaluation, long-term operation and cleaning strategies[J]. Journal of Membrane Science, 2018, 563: 926-937. doi: 10.1016/j.memsci.2018.06.045 [59] HENARES M, IZQUIERDO M, MARZAL P, et al. Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and energy analysis[J]. Separation and Purification Technology, 2017, 186: 10-19. doi: 10.1016/j.seppur.2017.05.035 [60] SETHUNGA G S M D P, KARAHAN H E, WANG R, et al. Wetting- and fouling-resistant hollow fiber membranes for dissolved methane recovery from anaerobic wastewater treatment effluents[J]. Journal of Membrane Science, 2021, 617: 118621. doi: 10.1016/j.memsci.2020.118621 [61] XU Y L, GOH K, WANG R, et al. A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction[J]. Separation and Purification Technology, 2019, 229: 115791. doi: 10.1016/j.seppur.2019.115791 [62] WONGCHITPHIMON S, RONGWONG W, CHUAH C Y, et al. Polymer-fluorinated silica composite hollow fiber membranes for the recovery of biogas dissolved in anaerobic effluent[J]. Journal of Membrane Science, 2017, 540: 146-154. doi: 10.1016/j.memsci.2017.06.050 [63] RONGWONG W, GOH K, SETHUNGA G S M D P, et al. Fouling formation in membrane contactors for methane recovery from anaerobic effluents[J]. Journal of Membrane Science, 2019, 573: 534-543. doi: 10.1016/j.memsci.2018.12.038 [64] CRONE B C, SORIAL G A, PRESSMAN J G, et al. Design and evaluation of degassed anaerobic membrane biofilm reactors for improved methane recovery[J]. Bioresource Technology Reports, 2020, 10: 100407. doi: 10.1016/j.biteb.2020.100407 [65] SETHUNGA G S M D P, KARAHAN H E, WANG R, et al. PDMS-coated porous PVDF hollow fiber membranes for efficient recovery of dissolved biomethane from anaerobic effluents[J]. Journal of Membrane Science, 2019, 584: 333-342. doi: 10.1016/j.memsci.2019.05.016 [66] RONGWONG W, WONGCHITPHIMON S, GOH K, et al. Transport properties of CO2 and CH4 in hollow fiber membrane contactor for the recovery of biogas from anaerobic membrane bioreactor effluent[J]. Journal of Membrane Science, 2017, 541: 62-72. doi: 10.1016/j.memsci.2017.06.090 [67] LI X S, DUTTA A, DONG Q R, et al. Dissolved methane harvesting using omniphobic membranes for anaerobically treated wastewaters[J]. Environmental Science & Technology Letters, 2019, 6(4): 228-234. [68] DUTTA A, LI X S, LEE J. Dissolved methane recovery from anaerobically treated wastewaters using solvent-based membrane contactor: An experimental and modelling study[J]. Separation and Purification Technology, 2021, 258: 118004. doi: 10.1016/j.seppur.2020.118004 [69] LI X S, DUTTA A, SAHA S, et al. Recovery of dissolved methane from anaerobically treated food waste leachate using solvent-based membrane contactor[J]. Water Research, 2020, 175: 115693. doi: 10.1016/j.watres.2020.115693 [70] MOSADEGH-SEDGHI S, RODRIGUE D, BRISSON J, et al. Wetting phenomenon in membrane contactors - Causes and prevention[J]. Journal of Membrane Science, 2014, 452: 332-353. doi: 10.1016/j.memsci.2013.09.055 [71] RAGHOEBARSING A A, POL A, van de PAS-SCHOONEN K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921. doi: 10.1038/nature04617 [72] ETTWIG K F, BUTLER M K, Le PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883 [73] SHIMA S, KRUEGER M, WEINERT T, et al. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically[J]. Nature, 2012, 481(7379): 98-101. doi: 10.1038/nature10663 [74] DING Z W, DING J, FU L, et al. Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria[J]. Applied Microbiology and Biotechnology, 2014, 98(24): 10211-10221. doi: 10.1007/s00253-014-5936-8 [75] LIU C S, LIU T, ZHENG X Y, et al. Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen[J]. Water Research, 2021, 194: 116963. doi: 10.1016/j.watres.2021.116963 [76] CHEN X M, GUO J H, SHI Y, et al. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2014, 48(16): 9540-9547. [77] KAMPMAN C, HENDRICKX T L G, LUESKEN F A, et al. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment[J]. Journal of Hazardous Materials, 2012, 227/228: 164-171. doi: 10.1016/j.jhazmat.2012.05.032 [78] SHI Y, HU S H, LOU J Q, et al. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor[J]. Environmental Science & Technology, 2013, 47(20): 11577-11583. [79] LEE J, ALRASHED W, ENGEL K, et al. Methane-based denitrification kinetics and syntrophy in a membrane biofilm reactor at low methane pressure[J]. The Science of the Total Environment, 2019, 695: 133818. doi: 10.1016/j.scitotenv.2019.133818 [80] FAN S Q, XIE G J, LU Y, et al. Mainstream nitrogen and dissolved methane removal through coupling n-DAMO with anammox in granular sludge at low temperature[J]. Environmental Science & Technology, 2021, 55(24): 16586-16596. [81] FAN S Q, XIE G J, LU Y, et al. Development of granular sludge coupling n-DAMO and Anammox in membrane granular sludge reactor for high rate nitrogen removal[J]. Environmental Research, 2020, 186: 109579. doi: 10.1016/j.envres.2020.109579 [82] CHEN X Y, CHEN X M, ZENG R J, et al. Instrumental role of bioreactors in nitrate/nitrite-dependent anaerobic methane oxidation-based biotechnologies for wastewater treatment: A review[J]. Science of the Total Environment, 2023, 857: 159728. doi: 10.1016/j.scitotenv.2022.159728 [83] LI W W, LU P L, ZHANG L L, et al. Long-term performance of denitrifying anaerobic methane oxidation under stepwise cooling and ambient temperature conditions[J]. The Science of the Total Environment, 2020, 713: 136739. doi: 10.1016/j.scitotenv.2020.136739 [84] GUPTA V, GOEL R. Managing dissolved methane gas in anaerobic effluents using microbial resource management-based strategies[J]. Bioresource Technology, 2019, 289: 121601. doi: 10.1016/j.biortech.2019.121601 [85] LIU T, LI J, KHAI LIM Z, et al. Simultaneous removal of dissolved methane and nitrogen from synthetic mainstream anaerobic effluent[J]. Environmental Science & Technology, 2020, 54(12): 7629-7638. [86] CHEN X M, LIU Y W, PENG L, et al. Model-based feasibility assessment of membrane biofilm reactor to achieve simultaneous ammonium, dissolved methane, and sulfide removal from anaerobic digestion liquor[J]. Scientific Reports, 2016, 6: 25114. doi: 10.1038/srep25114 [87] FAN S Q, XIE G J, LU Y, et al. Granular sludge coupling nitrate/nitrite dependent anaerobic methane oxidation with anammox: From proof-of-concept to high rate nitrogen removal[J]. Environmental Science & Technology, 2020, 54(1): 297-305. [88] SILVA-TEIRA A, SÁNCHEZ A, BUNTNER D, et al. Removal of dissolved methane and nitrogen from anaerobically treated effluents at low temperature by MBR post-treatment[J]. Chemical Engineering Journal, 2017, 326: 970-979. doi: 10.1016/j.cej.2017.06.047 [89] McANULTY M J, G POOSARLA V, KIM K Y, et al. Electricity from methane by reversing methanogenesis[J]. Nature Communications, 2017, 8: 15419. doi: 10.1038/ncomms15419 [90] YAMASAKI R, MAEDA T, WOOD T K. Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis[J]. Biotechnology for Biofuels, 2018, 11: 211. doi: 10.1186/s13068-018-1208-7 [91] CHEN S M, SMITH A L. Methane-driven microbial fuel cells recover energy and mitigate dissolved methane emissions from anaerobic effluents[J]. Environmental Science:Water Research & Technology, 2018, 4(1): 67-79. [92] CHEN S M, SMITH A L. Performance and microbial ecology of methane-driven microbial fuel cells at temperatures ranging from 25 to 5 ℃[J]. Water Research, 2019, 166: 115036. doi: 10.1016/j.watres.2019.115036 [93] HARCLERODE M, DOODY A, BROWER A, et al. Life cycle assessment and economic analysis of anaerobic membrane bioreactor whole-plant configurations for resource recovery from domestic wastewater[J]. Journal of Environmental Management, 2020, 269: 110720. doi: 10.1016/j.jenvman.2020.110720 [94] SMITH A L, STADLER L B, CAO L, et al. Navigating wastewater energy recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion[J]. Environmental Science & Technology, 2014, 48(10): 5972-5981. [95] KONG Z, LI L, WU J, et al. Evaluation of bio-energy recovery from the anaerobic treatment of municipal wastewater by a pilot-scale submerged anaerobic membrane bioreactor (AnMBR) at ambient temperature[J]. Bioresource Technology, 2021, 339: 125551. doi: 10.1016/j.biortech.2021.125551 [96] ZHANG X Y, GU J, MENG S J, et al. Dissolved methane in anaerobic effluent: Emission or recovery?[J]. Frontiers of Environmental Science & Engineering, 2022, 16(4): 54. [97] COOKNEY J, CARTMELL E, JEFFERSON B, et al. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors[J]. Water Science and Technology, 2012, 65(4): 604-610. doi: 10.2166/wst.2012.897 [98] McLEOD A, JEFFERSON B, McADAM E J. Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase[J]. Journal of Membrane Science, 2016, 510: 466-471. doi: 10.1016/j.memsci.2016.03.030 [99] RONGWONG W, GOH K, BAE T H. Energy analysis and optimization of hollow fiber membrane contactors for recovery of dissolve methane from anaerobic membrane bioreactor effluent[J]. Journal of Membrane Science, 2018, 554: 184-194. doi: 10.1016/j.memsci.2018.03.002