[1] YOSHIDA H, MØNSTER J, SCHEUTZ C. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant[J]. Water Research, 2014, 61: 108-118. doi: 10.1016/j.watres.2014.05.014
[2] 姜萌萌, 林敏, 郑晓宇, 等. 高温厌氧膜生物反应器处理餐厨废水的启动[J]. 中国环境科学, 2020, 40(12): 5318-5324. JIANG M M, LIN M, ZHENG X Y, et al. Start-up operation of anaerobic membrane bioreactor treating food wastewater under thermophilic condition[J]. China Environmental Science, 2020, 40(12): 5318-5324 (in Chinese).
[3] 王潇, 肖小兰, 许之扬, 等. AnMBR对高浓度餐厨废水的处理效能[J]. 环境工程学报, 2022, 16(11): 3728-3738. WANG X, XIAO X L, XU Z Y, et al. Performance of an anaerobic membrane bioreactor treating high concentration kitchen wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(11): 3728-3738 (in Chinese).
[4] KONG Z, LI L, XUE Y, et al. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review[J]. Journal of Cleaner Production, 2019, 231: 913-927. doi: 10.1016/j.jclepro.2019.05.233
[5] MUÑOZ SIERRA J D, OOSTERKAMP M J, WANG W, et al. Comparative performance of upflow anaerobic sludge blanket reactor and anaerobic membrane bioreactor treating phenolic wastewater: Overcoming high salinity[J]. Chemical Engineering Journal, 2019, 366: 480-490. doi: 10.1016/j.cej.2019.02.097
[6] KONG Z, XUE Y, HAO T W, et al. Carbon-neutral treatment of N, N-dimethylformamide-containing industrial wastewater by anaerobic membrane bioreactor (AnMBR): Bio-energy recovery and CO2 emission reduction[J]. Bioresource Technology, 2022, 358: 127396. doi: 10.1016/j.biortech.2022.127396
[7] 牛承鑫, 潘阳, 陆雪琴, 等. 厌氧膜生物反应器(AnMBR)膜污染过程及控制方法研究进展[J]. 环境化学, 2019, 38(12): 2851-2859. NIU C X, PAN Y, LU X Q, et al. Research progress in membrane fouling process and control method of anaerobic membrane bioreactor (AnMBR)[J]. Environmental Chemistry, 2019, 38(12): 2851-2859 (in Chinese).
[8] 戴金金, 牛承鑫, 潘阳, 等. 厌氧膜生物反应器污泥处理与膜污染控制研究进展[J]. 环境化学, 2020, 39(8): 2154-2165. DAI J J, NIU C X, PAN Y, et al. Overview of anaerobic membrane bioreactors for sludge treatment and membrane fouling control strategies[J]. Environmental Chemistry, 2020, 39(8): 2154-2165 (in Chinese).
[9] YEO H, AN J, REID R, et al. Contribution of liquid/gas mass-transfer limitations to dissolved methane oversaturation in anaerobic treatment of dilute wastewater[J]. Environmental Science & Technology, 2015, 49(17): 10366-10372.
[10] BECKER A M, YU K, STADLER L B, et al. Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies[J]. Bioresource Technology, 2017, 223: 131-140. doi: 10.1016/j.biortech.2016.10.031
[11] CAKIR F Y, STENSTROM M K. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology[J]. Water Research, 2005, 39(17): 4197-4203. doi: 10.1016/j.watres.2005.07.042
[12] 郝晓地, 孙思辈, 李季, 等. 甲烷氧化耦合污水脱氮研究进展[J]. 环境科学学报, 2023, 43(3): 1-15. HAO X D, SUN S B, LI J, et al. Research advances of methane oxidation coupled to nitrogen removal of wastewater[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 1-15 (in Chinese).
[13] MAAZ M, YASIN M, ASLAM M, et al. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations[J]. Bioresource Technology, 2019, 283: 358-372. doi: 10.1016/j.biortech.2019.03.061
[14] CHEN C, GUO W S, NGO H H, et al. Challenges in biogas production from anaerobic membrane bioreactors[J]. Renewable Energy, 2016, 98: 120-134. doi: 10.1016/j.renene.2016.03.095
[15] PAN X F, ANGELIDAKI I, ALVARADO-MORALES M, et al. Methane production from formate, acetate and H2/CO2;focusing on kinetics and microbial characterization[J]. Bioresource Technology, 2016, 218: 796-806. doi: 10.1016/j.biortech.2016.07.032
[16] VELASCO P, JEGATHEESAN V, THANGAVADIVEL K, et al. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents[J]. Chemosphere, 2021, 278: 130448. doi: 10.1016/j.chemosphere.2021.130448
[17] SMITH A L, STADLER L B, LOVE N G, et al. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review[J]. Bioresource Technology, 2012, 122: 149-159. doi: 10.1016/j.biortech.2012.04.055
[18] LEI Z, YANG S M, LI Y Y, et al. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives[J]. Bioresource Technology, 2018, 267: 756-768. doi: 10.1016/j.biortech.2018.07.050
[19] MALEKI E, CATALAN L J, LIAO B Q. Effect of organic loading rate on the performance of a submerged anaerobic membrane bioreactor (SAnMBR) for malting wastewater treatment and biogas production[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(6): 1636-1647.
[20] ISSA L, EL KIK O, EL-FADEL M. AnMBR technology for landfill leachate treatment: A framework towards improved performance[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(2): 517-538. doi: 10.1007/s11157-022-09615-2
[21] VINARDELL S, ASTALS S, PECES M, et al. Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109936. doi: 10.1016/j.rser.2020.109936
[22] GUO Q, YANG Z C, ZHANG B L, et al. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Frontiers of Environmental Science & Engineering, 2022, 16(6): 71.
[23] EVANS P J, PARAMESWARAN P, LIM K, et al. A comparative pilot-scale evaluation of gas-sparged and granular activated carbon-fluidized anaerobic membrane bioreactors for domestic wastewater treatment[J]. Bioresource Technology, 2019, 288: 120949. doi: 10.1016/j.biortech.2019.01.072
[24] RONG C, WANG T J, LUO Z B, et al. Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater[J]. Bioresource Technology, 2022, 354: 127167. doi: 10.1016/j.biortech.2022.127167
[25] SONG X Y, LUO W H, McDONALD J, et al. Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling[J]. Bioresource Technology, 2018, 250: 171-177. doi: 10.1016/j.biortech.2017.11.021
[26] MUÑOZ SIERRA J D, LAFITA C, GABALDÓN C, et al. Trace metals supplementation in anaerobic membrane bioreactors treating highly saline phenolic wastewater[J]. Bioresource Technology, 2017, 234: 106-114. doi: 10.1016/j.biortech.2017.03.032
[27] LIU Z H, YIN H, DANG Z, et al. Dissolved methane: A hurdle for anaerobic treatment of municipal wastewater[J]. Environmental Science & Technology, 2014, 48(2): 889-890.
[28] WEI C H, HARB M, AMY G, et al. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment[J]. Bioresource Technology, 2014, 166: 326-334. doi: 10.1016/j.biortech.2014.05.053
[29] DOLEJS P, OZCAN O, BAIR R, et al. Effect of psychrophilic temperature shocks on a gas-lift anaerobic membrane bioreactor (Gl-AnMBR) treating synthetic domestic wastewater[J]. Journal of Water Process Engineering, 2017, 16: 108-114. doi: 10.1016/j.jwpe.2016.12.005
[30] FOGLIA A, AKYOL Ç, FRISON N, et al. Long-term operation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating high salinity low loaded municipal wastewater in real environment[J]. Separation and Purification Technology, 2020, 236: 116279. doi: 10.1016/j.seppur.2019.116279
[31] DU R D, HU Y S, NITTA S, et al. Material mass balance and elemental flow analysis in a submerged anaerobic membrane bioreactor for municipal wastewater treatment towards low-carbon operation and resource recovery[J]. The Science of the Total Environment, 2022, 852: 158586. doi: 10.1016/j.scitotenv.2022.158586
[32] JI J Y, DU R D, NI J L, et al. Submerged anaerobic membrane bioreactor applied for mainstream municipal wastewater treatment at a low temperature: Sludge yield, energy balance and membrane filtration behaviors[J]. Journal of Cleaner Production, 2022, 355: 131831. doi: 10.1016/j.jclepro.2022.131831
[33] LIM K, EVANS P J, PARAMESWARAN P. Long-term performance of a pilot-scale gas-sparged anaerobic membrane bioreactor under ambient temperatures for holistic wastewater treatment[J]. Environmental Science & Technology, 2019, 53(13): 7347-7354.
[34] KONG Z, WU J, RONG C, et al. Sludge yield and degradation of suspended solids by a large pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater at 25 ℃[J]. Science of the Total Environment, 2021, 759: 143526. doi: 10.1016/j.scitotenv.2020.143526
[35] ROBLES Á, JIMÉNEZ-BENÍTEZ A, GIMÉNEZ J B, et al. A semi-industrial scale AnMBR for municipal wastewater treatment at ambient temperature: Performance of the biological process[J]. Water Research, 2022, 215: 118249. doi: 10.1016/j.watres.2022.118249
[36] LU X Q, ZHENG C T, ZHEN G Y, et al. Roles of colloidal particles and soluble biopolymers in long-term performance and fouling behaviors of submerged anaerobic membrane bioreactor treating methanolic wastewater[J]. Journal of Cleaner Production, 2021, 290: 125816. doi: 10.1016/j.jclepro.2021.125816
[37] CIRIK K, GOCER S. Performance of anaerobic membrane bioreactor treating landfill leachate[J]. Journal of Environmental Health Science and Engineering, 2020, 18(2): 383-393. doi: 10.1007/s40201-019-00376-9
[38] CHEN X M, GUO J H, XIE G J, et al. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility[J]. Water Research, 2015, 85: 295-303. doi: 10.1016/j.watres.2015.08.046
[39] MAGEN C, LAPHAM L L, POHLMAN J W, et al. A simple headspace equilibration method for measuring dissolved methane[J]. Limnology and Oceanography:Methods, 2014, 12(9): 637-650. doi: 10.4319/lom.2014.12.637
[40] FERRARI F, BALCAZAR J L, RODRIGUEZ-RODA I, et al. Anaerobic membrane bioreactor for biogas production from concentrated sewage produced during sewer mining[J]. The Science of the Total Environment, 2019, 670: 993-1000. doi: 10.1016/j.scitotenv.2019.03.218
[41] WU P H, NG K K, HONG P K A, et al. Treatment of low-strength wastewater at mesophilic and psychrophilic conditions using immobilized anaerobic biomass[J]. Chemical Engineering Journal, 2017, 311: 46-54. doi: 10.1016/j.cej.2016.11.077
[42] MARTINEZ-SOSA D, HELMREICH B, NETTER T, et al. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions[J]. Bioresource Technology, 2011, 102(22): 10377-10385. doi: 10.1016/j.biortech.2011.09.012
[43] PLEVRI A, MAMAIS D, NOUTSOPOULOS C. Anaerobic MBR technology for treating municipal wastewater at ambient temperatures[J]. Chemosphere, 2021, 275: 129961. doi: 10.1016/j.chemosphere.2021.129961
[44] SMITH A L, SKERLOS S J, RASKIN L. Anaerobic membrane bioreactor treatment of domestic wastewater at psychrophilic temperatures ranging from 15 ℃ to 3 ℃[J]. Environmental Science:Water Research & Technology, 2015, 1(1): 56-64.
[45] SMITH A L, SKERLOS S J, RASKIN L. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment[J]. Microbial Biotechnology, 2015, 8(5): 883-894. doi: 10.1111/1751-7915.12311
[46] SECO A, MATEO O, ZAMORANO-LóPEZ N, et al. Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology[J]. Environmental Science:Water Research & Technology, 2018, 4(11): 1877-1887.
[47] PRETEL R, MOÑINO P, ROBLES A, et al. Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste[J]. Journal of Environmental Management, 2016, 179: 83-92.
[48] YEO H, LEE H S. The effect of solids retention time on dissolved methane concentration in anaerobic membrane bioreactors[J]. Environmental Technology, 2013, 34(13/14/15/16): 2105-2112.
[49] YANG Y, ZANG Y, HU Y S, et al. Upflow anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment at room temperature and short HRTs: Process characteristics and practical applicability[J]. Chemical Engineering Journal, 2020, 383: 123186. doi: 10.1016/j.cej.2019.123186
[50] 鲁斌, 龚凯, 蒋红与, 等. AnMBR用于餐厨垃圾和剩余污泥共发酵的性能研究[J]. 中国环境科学, 2021, 41(5): 2290-2298. LU B, GONG K, JIANG H Y, et al. Performance of AnMBR for the co-digestion of food waste and waste activity sludge[J]. China Environmental Science, 2021, 41(5): 2290-2298 (in Chinese).
[51] SHIN C, McCARTY P L, BAE J. Importance of dissolved methane management when anaerobically treating low-strength wastewaters[J]. Current Organic Chemistry, 2016, 20(26): 2810-2816. doi: 10.2174/1385272820666160517155831
[52] SANCHIS-PERUCHO P, ROBLES Á, DURÁN F, et al. Widening the applicability of AnMBR for urban wastewater treatment through PDMS membranes for dissolved methane capture: Effect of temperature and hydrodynamics[J]. Journal of Environmental Management, 2021, 287: 112344. doi: 10.1016/j.jenvman.2021.112344
[53] SANCHIS-PERUCHO P, ROBLES Á, DURÁN F, et al. PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents[J]. Journal of Membrane Science, 2020, 604: 118070. doi: 10.1016/j.memsci.2020.118070
[54] SOHAIB Q, KALAKECH C, CHARMETTE C, et al. Hollow-fiber membrane contactor for biogas recovery from real anaerobic membrane bioreactor permeate[J]. Membranes, 2022, 12(2): 112. doi: 10.3390/membranes12020112
[55] VELASCO P, JEGATHEESAN V, OTHMAN M. Recovery of dissolved methane from anaerobic membrane bioreactor using degassing membrane contactors[J]. Frontiers in Environmental Science, 2018, 6: 151. doi: 10.3389/fenvs.2018.00151
[56] KALAKECH C, SOHAIB Q, LESAGE G, et al. Progress and challenges in recovering dissolved methane from anaerobic bioreactor permeate using membrane contactors: A comprehensive review[J]. Journal of Water Process Engineering, 2022, 50: 103218. doi: 10.1016/j.jwpe.2022.103218
[57] COOKNEY J, MCLEOD A, MATHIOUDAKIS V, et al. Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors[J]. Journal of Membrane Science, 2016, 502: 141-150. doi: 10.1016/j.memsci.2015.12.037
[58] HENARES M, FERRERO P, SAN-VALERO P, et al. Performance of a polypropylene membrane contactor for the recovery of dissolved methane from anaerobic effluents: Mass transfer evaluation, long-term operation and cleaning strategies[J]. Journal of Membrane Science, 2018, 563: 926-937. doi: 10.1016/j.memsci.2018.06.045
[59] HENARES M, IZQUIERDO M, MARZAL P, et al. Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and energy analysis[J]. Separation and Purification Technology, 2017, 186: 10-19. doi: 10.1016/j.seppur.2017.05.035
[60] SETHUNGA G S M D P, KARAHAN H E, WANG R, et al. Wetting- and fouling-resistant hollow fiber membranes for dissolved methane recovery from anaerobic wastewater treatment effluents[J]. Journal of Membrane Science, 2021, 617: 118621. doi: 10.1016/j.memsci.2020.118621
[61] XU Y L, GOH K, WANG R, et al. A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction[J]. Separation and Purification Technology, 2019, 229: 115791. doi: 10.1016/j.seppur.2019.115791
[62] WONGCHITPHIMON S, RONGWONG W, CHUAH C Y, et al. Polymer-fluorinated silica composite hollow fiber membranes for the recovery of biogas dissolved in anaerobic effluent[J]. Journal of Membrane Science, 2017, 540: 146-154. doi: 10.1016/j.memsci.2017.06.050
[63] RONGWONG W, GOH K, SETHUNGA G S M D P, et al. Fouling formation in membrane contactors for methane recovery from anaerobic effluents[J]. Journal of Membrane Science, 2019, 573: 534-543. doi: 10.1016/j.memsci.2018.12.038
[64] CRONE B C, SORIAL G A, PRESSMAN J G, et al. Design and evaluation of degassed anaerobic membrane biofilm reactors for improved methane recovery[J]. Bioresource Technology Reports, 2020, 10: 100407. doi: 10.1016/j.biteb.2020.100407
[65] SETHUNGA G S M D P, KARAHAN H E, WANG R, et al. PDMS-coated porous PVDF hollow fiber membranes for efficient recovery of dissolved biomethane from anaerobic effluents[J]. Journal of Membrane Science, 2019, 584: 333-342. doi: 10.1016/j.memsci.2019.05.016
[66] RONGWONG W, WONGCHITPHIMON S, GOH K, et al. Transport properties of CO2 and CH4 in hollow fiber membrane contactor for the recovery of biogas from anaerobic membrane bioreactor effluent[J]. Journal of Membrane Science, 2017, 541: 62-72. doi: 10.1016/j.memsci.2017.06.090
[67] LI X S, DUTTA A, DONG Q R, et al. Dissolved methane harvesting using omniphobic membranes for anaerobically treated wastewaters[J]. Environmental Science & Technology Letters, 2019, 6(4): 228-234.
[68] DUTTA A, LI X S, LEE J. Dissolved methane recovery from anaerobically treated wastewaters using solvent-based membrane contactor: An experimental and modelling study[J]. Separation and Purification Technology, 2021, 258: 118004. doi: 10.1016/j.seppur.2020.118004
[69] LI X S, DUTTA A, SAHA S, et al. Recovery of dissolved methane from anaerobically treated food waste leachate using solvent-based membrane contactor[J]. Water Research, 2020, 175: 115693. doi: 10.1016/j.watres.2020.115693
[70] MOSADEGH-SEDGHI S, RODRIGUE D, BRISSON J, et al. Wetting phenomenon in membrane contactors - Causes and prevention[J]. Journal of Membrane Science, 2014, 452: 332-353. doi: 10.1016/j.memsci.2013.09.055
[71] RAGHOEBARSING A A, POL A, van de PAS-SCHOONEN K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921. doi: 10.1038/nature04617
[72] ETTWIG K F, BUTLER M K, Le PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883
[73] SHIMA S, KRUEGER M, WEINERT T, et al. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically[J]. Nature, 2012, 481(7379): 98-101. doi: 10.1038/nature10663
[74] DING Z W, DING J, FU L, et al. Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria[J]. Applied Microbiology and Biotechnology, 2014, 98(24): 10211-10221. doi: 10.1007/s00253-014-5936-8
[75] LIU C S, LIU T, ZHENG X Y, et al. Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen[J]. Water Research, 2021, 194: 116963. doi: 10.1016/j.watres.2021.116963
[76] CHEN X M, GUO J H, SHI Y, et al. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2014, 48(16): 9540-9547.
[77] KAMPMAN C, HENDRICKX T L G, LUESKEN F A, et al. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment[J]. Journal of Hazardous Materials, 2012, 227/228: 164-171. doi: 10.1016/j.jhazmat.2012.05.032
[78] SHI Y, HU S H, LOU J Q, et al. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor[J]. Environmental Science & Technology, 2013, 47(20): 11577-11583.
[79] LEE J, ALRASHED W, ENGEL K, et al. Methane-based denitrification kinetics and syntrophy in a membrane biofilm reactor at low methane pressure[J]. The Science of the Total Environment, 2019, 695: 133818. doi: 10.1016/j.scitotenv.2019.133818
[80] FAN S Q, XIE G J, LU Y, et al. Mainstream nitrogen and dissolved methane removal through coupling n-DAMO with anammox in granular sludge at low temperature[J]. Environmental Science & Technology, 2021, 55(24): 16586-16596.
[81] FAN S Q, XIE G J, LU Y, et al. Development of granular sludge coupling n-DAMO and Anammox in membrane granular sludge reactor for high rate nitrogen removal[J]. Environmental Research, 2020, 186: 109579. doi: 10.1016/j.envres.2020.109579
[82] CHEN X Y, CHEN X M, ZENG R J, et al. Instrumental role of bioreactors in nitrate/nitrite-dependent anaerobic methane oxidation-based biotechnologies for wastewater treatment: A review[J]. Science of the Total Environment, 2023, 857: 159728. doi: 10.1016/j.scitotenv.2022.159728
[83] LI W W, LU P L, ZHANG L L, et al. Long-term performance of denitrifying anaerobic methane oxidation under stepwise cooling and ambient temperature conditions[J]. The Science of the Total Environment, 2020, 713: 136739. doi: 10.1016/j.scitotenv.2020.136739
[84] GUPTA V, GOEL R. Managing dissolved methane gas in anaerobic effluents using microbial resource management-based strategies[J]. Bioresource Technology, 2019, 289: 121601. doi: 10.1016/j.biortech.2019.121601
[85] LIU T, LI J, KHAI LIM Z, et al. Simultaneous removal of dissolved methane and nitrogen from synthetic mainstream anaerobic effluent[J]. Environmental Science & Technology, 2020, 54(12): 7629-7638.
[86] CHEN X M, LIU Y W, PENG L, et al. Model-based feasibility assessment of membrane biofilm reactor to achieve simultaneous ammonium, dissolved methane, and sulfide removal from anaerobic digestion liquor[J]. Scientific Reports, 2016, 6: 25114. doi: 10.1038/srep25114
[87] FAN S Q, XIE G J, LU Y, et al. Granular sludge coupling nitrate/nitrite dependent anaerobic methane oxidation with anammox: From proof-of-concept to high rate nitrogen removal[J]. Environmental Science & Technology, 2020, 54(1): 297-305.
[88] SILVA-TEIRA A, SÁNCHEZ A, BUNTNER D, et al. Removal of dissolved methane and nitrogen from anaerobically treated effluents at low temperature by MBR post-treatment[J]. Chemical Engineering Journal, 2017, 326: 970-979. doi: 10.1016/j.cej.2017.06.047
[89] McANULTY M J, G POOSARLA V, KIM K Y, et al. Electricity from methane by reversing methanogenesis[J]. Nature Communications, 2017, 8: 15419. doi: 10.1038/ncomms15419
[90] YAMASAKI R, MAEDA T, WOOD T K. Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis[J]. Biotechnology for Biofuels, 2018, 11: 211. doi: 10.1186/s13068-018-1208-7
[91] CHEN S M, SMITH A L. Methane-driven microbial fuel cells recover energy and mitigate dissolved methane emissions from anaerobic effluents[J]. Environmental Science:Water Research & Technology, 2018, 4(1): 67-79.
[92] CHEN S M, SMITH A L. Performance and microbial ecology of methane-driven microbial fuel cells at temperatures ranging from 25 to 5 ℃[J]. Water Research, 2019, 166: 115036. doi: 10.1016/j.watres.2019.115036
[93] HARCLERODE M, DOODY A, BROWER A, et al. Life cycle assessment and economic analysis of anaerobic membrane bioreactor whole-plant configurations for resource recovery from domestic wastewater[J]. Journal of Environmental Management, 2020, 269: 110720. doi: 10.1016/j.jenvman.2020.110720
[94] SMITH A L, STADLER L B, CAO L, et al. Navigating wastewater energy recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion[J]. Environmental Science & Technology, 2014, 48(10): 5972-5981.
[95] KONG Z, LI L, WU J, et al. Evaluation of bio-energy recovery from the anaerobic treatment of municipal wastewater by a pilot-scale submerged anaerobic membrane bioreactor (AnMBR) at ambient temperature[J]. Bioresource Technology, 2021, 339: 125551. doi: 10.1016/j.biortech.2021.125551
[96] ZHANG X Y, GU J, MENG S J, et al. Dissolved methane in anaerobic effluent: Emission or recovery?[J]. Frontiers of Environmental Science & Engineering, 2022, 16(4): 54.
[97] COOKNEY J, CARTMELL E, JEFFERSON B, et al. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors[J]. Water Science and Technology, 2012, 65(4): 604-610. doi: 10.2166/wst.2012.897
[98] McLEOD A, JEFFERSON B, McADAM E J. Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase[J]. Journal of Membrane Science, 2016, 510: 466-471. doi: 10.1016/j.memsci.2016.03.030
[99] RONGWONG W, GOH K, BAE T H. Energy analysis and optimization of hollow fiber membrane contactors for recovery of dissolve methane from anaerobic membrane bioreactor effluent[J]. Journal of Membrane Science, 2018, 554: 184-194. doi: 10.1016/j.memsci.2018.03.002