-
有机气溶胶(organic aerosol,OA)是大气细颗粒物的重要成分,在灰霾的形成过程中起重要作用,是影响我国灰霾污染频发的关键内因之一[1 − 3]. 在我国,OA对大气气溶胶的贡献在10%—70%,某些地区可达 80%[4 − 5]. 有机气溶胶来源和成分复杂,对空气质量、大气化学和气候强迫有着深远的影响[6 − 7]. 其中最广为人知的吸收光碳质气溶胶是黑碳(blank carbon, BC)和棕碳(brown carbon,BrC), 棕碳是一类能够在可见光区和近紫外光区(200—550 nm之间)对太阳辐射产生较强吸收的有机物,该类物质兼有散射和吸光能力、大多显棕黄色或棕褐色. 棕碳对地区辐射强迫、区域气候效应有重要的影响,最新的模式研究表明,棕碳对全球辐射强迫的贡献约为黑碳的27%—70%[8],IPCC(政府间气候变化委员会)在第五次评估报告中首次把棕碳对气候变化的影响作为着重关注和讨论的议题 [9]. 目前,棕碳已成为国际大气环境领域的研究热点之一[10 − 12].
BrC来源复杂,有一次源和二次源之分. 其一次源主要是生物质燃料或化石燃料的不完全燃烧的排放[13],而二次源主要是在大气气溶胶老化过程中形成二级吸光化合物,例如在高氮氧化物(NOx)水平下产生芳香族二次有机气溶胶,或者通过各种水相反应,如木质素氧化[14],以及通过反应性摄取异戊二烯形成光吸收低聚物等[15]. 目前对于BrC的光学性质研究最为广泛,而其中最为常用的方法就是溶剂萃取法,即将采集的样品用溶剂进行萃取,随后再对萃取液进行分析的一种研究方法[16]. 该方法既可以有效地分析BrC的化学组成,还可以避免其他物质(如黑碳)对BrC光学性质的影响. 近年来一些工作探讨了不同溶剂萃取BrC效果的差异,其主要集中在乙腈、甲醇、正己烷等混合溶剂与水[17],这些结果表明溶剂的选择对BrC光学性质有很大影响.
我国城市大气复合污染严重,2013年1月以来,大尺度区域能见度降低、灰霾现象频繁发生,其中致使多地的大气颗粒物浓度增大,能见度显著下降的主要原因之一就是大气中有机物浓度的变化. 灰霾发生期间大气颗粒物中有机物的浓度显著增加,有机气溶胶对消光的贡献越来越大. 如德州颗粒物中有机物对大气总消光的贡献可达75.5%[18],珠江三角洲秋冬季有机气溶胶是对消光系数贡献最大的组分,占总消光的(45.9 ± 1.6)%[19];在北京地区,有机气溶胶对消光的贡献可达到57%[20]. 为了更好地治理我国城市地区的大气环境污染问题,生态环境等部门共同展开调研,关于京津冀以及其周边28个城市和汾渭平原11个城市共39个城市的大气污染情况的研究. 运城市是我国能源重化工基地,化工行业尤其是煤化工企业较多。PM2.5是运城市大气中的主要污染物,在汾渭平原处于比较高的水平。分析该市PM2.5中化学组分,确定其污染特征对科学治理雾霾,提高空气质量具有重要意义. 本研究采集运城市冬季大气PM2.5样品,分析化学组成和BrC光学性质的特征,获取了冬季污染阶段运城市大气PM2.5化学组成、吸光特性及其影响因素,以期为运城市有效控制PM2.5污染提供理论基础.
运城冬季细颗粒物化学组成及棕碳吸光特性
Chemical composition and light absorption characteristics of brown carbon in Yuncheng in Winter
-
摘要: 为了更好地探究我国城市地区大气污染问题,2019年10月15—2020年3月1日在山西省运城市采用四通道大气颗粒物采样仪每23 h 进行1次细颗粒物(PM2.5)样品采集,分析了样品中有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、水溶性离子的浓度,并对比分析了甲醇提取液和水提取液的紫外-可见吸光特性. 结果显示,采样期间PM2.5质量浓度变化范围为6.21—325 μg·m−3,其中有41 d达到《环境空气质量指数(AQI)技术规定(试行)》(HJ 633—2012)规定轻度污染及以上的标准,占总天数的64%,说明运城市冬季污染严重. 其中,二次无机水溶性离子和有机质为PM2.5的主要组成成分,分别占PM2.5质量浓度的39.6%、29.7%(优良天),38.9%、30.8%(轻-中度污染),40.4%、29.1%(重度污染),38.9%、26.5%(严重污染). NO3−是含量最高的水溶性离子,并且4个时期NO3−/ SO42−的比值分别为2.15、2.11、2.31和1.93,说明机动车尾气排放的NOx是污染的主要来源. 对运城市水溶性棕碳 (WSBrC) 和甲醇溶性棕碳(MSBrC) 在365 nm下不同时期Abs、AAE、MAE进行分析,发现所有时期甲醇提取液的有机组分光吸收效率均高于水提取液. 对MSBrC与SOC和POC进行线性拟合,结果显示Abs365,M 与SOC (r= 0.80) 和POC (r=0.69)都具有较强相关性,表明其二次光化学反应为BrC主要来源.Abstract: In order to better explore the problem of air pollution in urban areas in China, a four-channel sampler was used to collect fine particulate matter (PM2.5) samples daily in Yuncheng City, Shanxi Province from October 15, 2019 to March 1, 2020. The concentrations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and water-soluble ions in the samples were analyzed, and the light absorption of methanol extract and water extract were compared. The results showed that the concentration of PM2.5 varied from 6.21 μg·m−3 to 325 μg·m−3 during the sampling period. 41 d reached the standard of mild pollution or above stipulate in the Technical Provisions of Ambient Air Quality Index (AQI) (HJ 633—2012), accounting for 64% of the total days, indicating that air pollution in Yuncheng was very serious in winter. Secondary inorganic water-soluble ions and organic matter were the main components of PM2.5, accounting for 39.6% and 29.7% (fine days), 38.9% and 30.8% (moderate pollution), 40.4% and 29.1% (heavy pollution), 38.9% and 26.5% (serious pollution) of PM2.5 mass concentration, respectively. NO3− was the highest species, and the ratios of NO3−/ SO42− in the four periods were 2.15, 2.11, 2.31 and 1.93, respectively, indicating that NOx from motor vehicle exhaust was the main source of NO3−. The optical parameters, Abs, AAE and MAE of water-soluble brown carbon (WSBrC) and methanol extractable brown carbon (MSBrC) at 365 nm showed that the absorption efficiency of the unit extracted by methanol was higher than that of the water extract at all stages. The linear fit between MSBrC and SOC showed Abs365,M, SOC (r= 0.80) and POC (r=0.69), indicating that secondary photochemical reactions were the main source of BrC.
-
Key words:
- fine particle /
- chemical composition /
- brown carbon /
- light absorption properties /
- source.
-
表 1 光学参数
Table 1. Optical parameters
优良天
Fine days轻-中度污染
Moderate pollution重度-严重污染
Heavy-serious pollutionAV±SD Range AV±SD Range AV±SD Range Abs365,W/(Mm−1) 8.46±3.94 1.78—17.62 13.76±4.63 5.04—27.62 16.89±7.70 6.31—30.25 Abs365,M/(Mm−1) 17.61±11.70 1.18—46.17 34.73±19.40 7.03—71.48 46.92±27.22 9.04—97.61 MAEw/(m2·g−1) 1.27±0.60 0.37—1.66 1.18±0.40 0.5—2.10 0.97±0.24 0.62—1.40 MAEM/(m2·g−1) 1.40±0.65 0.19—2.44 1.77±0.60 0.61—2.84 1.60±0.38 0.87—2.13 AAEW 4.65±1.05 2.89—6.15 5.72±1.44 3.84—9.64 6.10±1.32 4.44—8.28 AAEM 6.75±1.03 4.64—8.79 7.46±1.11 5.40—9.38 7.67±1.23 6.49—9.86 -
[1] LI X R, JIANG L, BAI Y, et al. Wintertime aerosol chemistry in Beijing during haze period: Significant contribution from secondary formation and biomass burning emission[J]. Atmospheric Research, 2019, 218: 25-33. doi: 10.1016/j.atmosres.2018.10.010 [2] GUO S, HU M, GUO Q F, et al. Primary sources and secondary formation of organic aerosols in Beijing, China[J]. Environmental Science & Technology, 2012, 46(18): 9846-9853. [3] PONGPIACHAN S, CHOOCHUAY C, CHALACHOL J, et al. Chemical characterisation of organic functional group compositions in PM2.5 collected at nine administrative provinces in northern Thailand during the Haze Episode in 2013[J]. Asian Pacific Journal of Cancer Prevention, 2013, 14(6): 3653-3661. doi: 10.7314/APJCP.2013.14.6.3653 [4] JI D S, ZHANG J K, HE J, et al. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China[J]. Atmospheric Environment, 2016, 125: 293-306. doi: 10.1016/j.atmosenv.2015.11.020 [5] WANG Q Q, HUANG X H H, ZHANG T, et al. Organic tracer-based source analysis of PM2.5 organic and elemental carbon: A case study at Dongguan in the Pearl River Delta, China[J]. Atmospheric Environment, 2015, 118: 164-175. doi: 10.1016/j.atmosenv.2015.07.033 [6] LASKIN A, LASKIN J, NIZKORODOV S A. Chemistry of atmospheric brown carbon[J]. Chemical Reviews, 2015, 115(10): 4335-4382. doi: 10.1021/cr5006167 [7] ZHANG Q, SHEN Z X, ZHANG T, et al. Spatial distribution and sources of winter black carbon and brown carbon in six Chinese megacities[J]. Science of the Total Environment, 2021, 762: 143075. doi: 10.1016/j.scitotenv.2020.143075 [8] LIN G X, PENNER J E, FLANNER M G, et al. Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7453-7476. doi: 10.1002/2013JD021186 [9] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2013. [10] LIN P, BLUVSHTEIN N, RUDICH Y, et al. Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event[J]. Environmental Science & Technology, 2017, 51(20): 11561-11570. [11] WASHENFELDER R A, AZZARELLO L, BALL K, et al. Complexity in the evolution, composition, and spectroscopy of brown carbon in aircraft measurements of wildfire plumes[J]. Geophysical Research Letters, 2022, 49(9): e2022GL098951. [12] YAN J P, WANG X P, GONG P, et al. Review of brown carbon aerosols: Recent progress and perspectives[J]. Science of the Total Environment, 2018, 634: 1475-1485. doi: 10.1016/j.scitotenv.2018.04.083 [13] ANDREAE M O, GELENCSÉR A. Black carbon or brown carbon?The nature of light-absorbing carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(10): 3131-3148. doi: 10.5194/acp-6-3131-2006 [14] HOFFER A, GELENCSÉR A, GUYON P, et al. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3563-3570. doi: 10.5194/acp-6-3563-2006 [15] LIN Y H, BUDISULISTIORINI S H, CHU K, et al. Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols[J]. Environmental Science & Technology, 2014, 48(20): 12012-12021. [16] 赵美玲, 黄汝锦, 杨露. 甲醇和有机混合溶剂提取棕碳气溶胶光学性质的差异及原因探讨[J]. 地球环境学报, 2021, 12(6): 666-676. doi: 10.7515/JEE212017 ZHAO M L, HUANG R J, YANG L. Effects of extraction solvents on the optical properties of brown carbon aerosols[J]. Journal of Earth Environment, 2021, 12(6): 666-676(in Chinese). doi: 10.7515/JEE212017
[17] CHEN Y, BOND T C. Light absorption by organic carbon from wood combustion[J]. Atmospheric Chemistry and Physics, 2010, 10(4): 1773-1787. doi: 10.5194/acp-10-1773-2010 [18] 徐伟召, 朱雯斐, 王甜甜, 等. 冬季德州市大气颗粒物消光与化学组成关系研究[J]. 环境科学学报, 2019, 39(4): 1057-1065. doi: 10.13671/j.hjkxxb.2019.0051 XU W Z, ZHU W F, WANG T T, et al. Relationship between the aerosol light extinction and chemical composition in winter of Dezhou City[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1057-1065(in Chinese). doi: 10.13671/j.hjkxxb.2019.0051
[19] 付晓辛. 珠江三角洲地区PM2.5浓度组成变化及其对粒子酸度和消光的影响[D]. 广州: 中国科学院研究生院(广州地球化学研究所) 2015. FU X X. Influence of PM2.5 major components on aerosol acidity and light extinction in the Pearl River Delta region[D]. Guangzhou: Chinese Academy of Sciences (Guangzhou Institute of Geochemistry) 2015(in Chinese).
[20] WANG Y H, LIU Z R, ZHANG J K, et al. Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing[J]. Atmospheric Chemistry and Physics, 2015, 15(6): 3205-3215. doi: 10.5194/acp-15-3205-2015 [21] TURPIN B J, HUNTZICKER J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment, 1995, 29(23): 3527-3544. doi: 10.1016/1352-2310(94)00276-Q [22] XIE M J, CHEN X, HAYS M D, et al. Light absorption of secondary organic aerosol: Composition and contribution of nitroaromatic compounds[J]. Environmental Science & Technology, 2017, 51(20): 11607-11616. [23] VECCHI R, CHIARI M, D’ALESSANDRO A, et al. A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy[J]. Atmospheric Environment, 2008, 42(9): 2240-2253. doi: 10.1016/j.atmosenv.2007.11.039 [24] WANG Y, ZHUANG G S, ZHANG X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment, 2006, 40(16): 2935-2952. doi: 10.1016/j.atmosenv.2005.12.051 [25] 狄一安, 杨勇杰, 周瑞, 等. 北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002 DI Y A, YANG Y J, ZHOU R, et al. Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring[J]. Environmental Chemistry, 2013, 32(9): 1604-1610(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.09.002
[26] 刘保献, 张大伟, 陈添, 等. 北京市PM2.5主要化学组分浓度水平研究与特征分析[J]. 环境科学学报, 2015, 35(12): 4053-4060. LIU B X, ZHANG D W, CHEN T, et al. Characteristics and major chemical compositions of PM2.5 in Beijing[J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4053-4060(in Chinese).
[27] 吴丹, 蔺少龙, 杨焕强, 等. 杭州市PM2.5中水溶性离子的污染特征及其消光贡献[J]. 环境科学, 2017, 38(7): 2656-2666. WU D, LIN S L, YANG H Q, et al. Pollution characteristics and light extinction contribution of water-soluble ions of PM2.5 in Hangzhou[J]. Environmental Science, 2017, 38(7): 2656-2666(in Chinese).
[28] 张显, 田莎莎, 刘盈盈, 等. 沈阳市采暖期与非采暖期空气PM2.5污染特征及来源分析[J]. 环境科学, 2019, 40(3): 1062-1070. ZHANG X, TIAN S S, LIU Y Y, et al. Pollution characteristics and source apportionment of PM2.5 in heating and non-heating periods in Shenyang[J]. Environmental Science, 2019, 40(3): 1062-1070(in Chinese).
[29] ANDREAE M O. Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols[J]. Science, 1983, 220(4602): 1148-1151. doi: 10.1126/science.220.4602.1148 [30] LIANG Y H, WANG X F, DONG S W, et al. Size distributions of nitrated phenols in winter at a coastal site in North China and the impacts from primary sources and secondary formation[J]. Chemosphere, 2020, 250: 126256. doi: 10.1016/j.chemosphere.2020.126256 [31] PARK R J, KIM M J, JEONG J I, et al. A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia[J]. Atmospheric Environment, 2010, 44(11): 1414-1421. doi: 10.1016/j.atmosenv.2010.01.042 [32] HECOBIAN A, ZHANG X, ZHENG M, et al. Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States[J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5965-5977. doi: 10.5194/acp-10-5965-2010 [33] BONES D L, HENRICKSEN D K, MANG S A, et al. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D5): D05203.