[1] LI X R, JIANG L, BAI Y, et al. Wintertime aerosol chemistry in Beijing during haze period: Significant contribution from secondary formation and biomass burning emission[J]. Atmospheric Research, 2019, 218: 25-33. doi: 10.1016/j.atmosres.2018.10.010
[2] GUO S, HU M, GUO Q F, et al. Primary sources and secondary formation of organic aerosols in Beijing, China[J]. Environmental Science & Technology, 2012, 46(18): 9846-9853.
[3] PONGPIACHAN S, CHOOCHUAY C, CHALACHOL J, et al. Chemical characterisation of organic functional group compositions in PM2.5 collected at nine administrative provinces in northern Thailand during the Haze Episode in 2013[J]. Asian Pacific Journal of Cancer Prevention, 2013, 14(6): 3653-3661. doi: 10.7314/APJCP.2013.14.6.3653
[4] JI D S, ZHANG J K, HE J, et al. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China[J]. Atmospheric Environment, 2016, 125: 293-306. doi: 10.1016/j.atmosenv.2015.11.020
[5] WANG Q Q, HUANG X H H, ZHANG T, et al. Organic tracer-based source analysis of PM2.5 organic and elemental carbon: A case study at Dongguan in the Pearl River Delta, China[J]. Atmospheric Environment, 2015, 118: 164-175. doi: 10.1016/j.atmosenv.2015.07.033
[6] LASKIN A, LASKIN J, NIZKORODOV S A. Chemistry of atmospheric brown carbon[J]. Chemical Reviews, 2015, 115(10): 4335-4382. doi: 10.1021/cr5006167
[7] ZHANG Q, SHEN Z X, ZHANG T, et al. Spatial distribution and sources of winter black carbon and brown carbon in six Chinese megacities[J]. Science of the Total Environment, 2021, 762: 143075. doi: 10.1016/j.scitotenv.2020.143075
[8] LIN G X, PENNER J E, FLANNER M G, et al. Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7453-7476. doi: 10.1002/2013JD021186
[9] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2013.
[10] LIN P, BLUVSHTEIN N, RUDICH Y, et al. Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event[J]. Environmental Science & Technology, 2017, 51(20): 11561-11570.
[11] WASHENFELDER R A, AZZARELLO L, BALL K, et al. Complexity in the evolution, composition, and spectroscopy of brown carbon in aircraft measurements of wildfire plumes[J]. Geophysical Research Letters, 2022, 49(9): e2022GL098951.
[12] YAN J P, WANG X P, GONG P, et al. Review of brown carbon aerosols: Recent progress and perspectives[J]. Science of the Total Environment, 2018, 634: 1475-1485. doi: 10.1016/j.scitotenv.2018.04.083
[13] ANDREAE M O, GELENCSÉR A. Black carbon or brown carbon?The nature of light-absorbing carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(10): 3131-3148. doi: 10.5194/acp-6-3131-2006
[14] HOFFER A, GELENCSÉR A, GUYON P, et al. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3563-3570. doi: 10.5194/acp-6-3563-2006
[15] LIN Y H, BUDISULISTIORINI S H, CHU K, et al. Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols[J]. Environmental Science & Technology, 2014, 48(20): 12012-12021.
[16] 赵美玲, 黄汝锦, 杨露. 甲醇和有机混合溶剂提取棕碳气溶胶光学性质的差异及原因探讨[J]. 地球环境学报, 2021, 12(6): 666-676. doi: 10.7515/JEE212017 ZHAO M L, HUANG R J, YANG L. Effects of extraction solvents on the optical properties of brown carbon aerosols[J]. Journal of Earth Environment, 2021, 12(6): 666-676(in Chinese). doi: 10.7515/JEE212017
[17] CHEN Y, BOND T C. Light absorption by organic carbon from wood combustion[J]. Atmospheric Chemistry and Physics, 2010, 10(4): 1773-1787. doi: 10.5194/acp-10-1773-2010
[18] 徐伟召, 朱雯斐, 王甜甜, 等. 冬季德州市大气颗粒物消光与化学组成关系研究[J]. 环境科学学报, 2019, 39(4): 1057-1065. doi: 10.13671/j.hjkxxb.2019.0051 XU W Z, ZHU W F, WANG T T, et al. Relationship between the aerosol light extinction and chemical composition in winter of Dezhou City[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1057-1065(in Chinese). doi: 10.13671/j.hjkxxb.2019.0051
[19] 付晓辛. 珠江三角洲地区PM2.5浓度组成变化及其对粒子酸度和消光的影响[D]. 广州: 中国科学院研究生院(广州地球化学研究所) 2015. FU X X. Influence of PM2.5 major components on aerosol acidity and light extinction in the Pearl River Delta region[D]. Guangzhou: Chinese Academy of Sciences (Guangzhou Institute of Geochemistry) 2015(in Chinese).
[20] WANG Y H, LIU Z R, ZHANG J K, et al. Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing[J]. Atmospheric Chemistry and Physics, 2015, 15(6): 3205-3215. doi: 10.5194/acp-15-3205-2015
[21] TURPIN B J, HUNTZICKER J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment, 1995, 29(23): 3527-3544. doi: 10.1016/1352-2310(94)00276-Q
[22] XIE M J, CHEN X, HAYS M D, et al. Light absorption of secondary organic aerosol: Composition and contribution of nitroaromatic compounds[J]. Environmental Science & Technology, 2017, 51(20): 11607-11616.
[23] VECCHI R, CHIARI M, D’ALESSANDRO A, et al. A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy[J]. Atmospheric Environment, 2008, 42(9): 2240-2253. doi: 10.1016/j.atmosenv.2007.11.039
[24] WANG Y, ZHUANG G S, ZHANG X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment, 2006, 40(16): 2935-2952. doi: 10.1016/j.atmosenv.2005.12.051
[25] 狄一安, 杨勇杰, 周瑞, 等. 北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002 DI Y A, YANG Y J, ZHOU R, et al. Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring[J]. Environmental Chemistry, 2013, 32(9): 1604-1610(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.09.002
[26] 刘保献, 张大伟, 陈添, 等. 北京市PM2.5主要化学组分浓度水平研究与特征分析[J]. 环境科学学报, 2015, 35(12): 4053-4060. LIU B X, ZHANG D W, CHEN T, et al. Characteristics and major chemical compositions of PM2.5 in Beijing[J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4053-4060(in Chinese).
[27] 吴丹, 蔺少龙, 杨焕强, 等. 杭州市PM2.5中水溶性离子的污染特征及其消光贡献[J]. 环境科学, 2017, 38(7): 2656-2666. WU D, LIN S L, YANG H Q, et al. Pollution characteristics and light extinction contribution of water-soluble ions of PM2.5 in Hangzhou[J]. Environmental Science, 2017, 38(7): 2656-2666(in Chinese).
[28] 张显, 田莎莎, 刘盈盈, 等. 沈阳市采暖期与非采暖期空气PM2.5污染特征及来源分析[J]. 环境科学, 2019, 40(3): 1062-1070. ZHANG X, TIAN S S, LIU Y Y, et al. Pollution characteristics and source apportionment of PM2.5 in heating and non-heating periods in Shenyang[J]. Environmental Science, 2019, 40(3): 1062-1070(in Chinese).
[29] ANDREAE M O. Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols[J]. Science, 1983, 220(4602): 1148-1151. doi: 10.1126/science.220.4602.1148
[30] LIANG Y H, WANG X F, DONG S W, et al. Size distributions of nitrated phenols in winter at a coastal site in North China and the impacts from primary sources and secondary formation[J]. Chemosphere, 2020, 250: 126256. doi: 10.1016/j.chemosphere.2020.126256
[31] PARK R J, KIM M J, JEONG J I, et al. A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia[J]. Atmospheric Environment, 2010, 44(11): 1414-1421. doi: 10.1016/j.atmosenv.2010.01.042
[32] HECOBIAN A, ZHANG X, ZHENG M, et al. Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States[J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5965-5977. doi: 10.5194/acp-10-5965-2010
[33] BONES D L, HENRICKSEN D K, MANG S A, et al. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D5): D05203.