-
氧化水处理是水处理中的一种通用处理单元,可用于消毒、污染物降解和改善其他处理方案[1]. 消毒是水处理过程中不可或缺的一个单元. 目前,在实际水处理过程中,应用较多的消毒剂为次氯酸钠、二氧化氯、液氯、氯胺等,大多为含氯消毒剂. 不同种类的含氯消毒剂所生成的氯代消毒副产物(CDBPs)也存在差异[2 − 5],其中次氯酸钠是我国常用的饮用水消毒剂之一[6].
溶解有机物(DOM)是一种复杂的异质化学结构混合物. 它普遍存在于地表水源中[7 − 11]. DOM主要包括腐殖质、蛋白质和其他芳香族或脂肪族有机化合物的复杂混合物[12],其中DOM的富电子部分(如酚类化合物、烯烃和有机胺),被公认为是饮用水和废水处理中通过多种途径消耗化学氧化剂的主要消耗者[13 − 15]. 例如,Sharma等 [13]对Fe(Ⅵ) 和Fe(Ⅴ) 氧化多种有机化合物(胺类、酚类、醇类和烃类等)的动力学和机理进行了评估,结果表明Fe(Ⅵ) 通常通过电子转移来完成对有机化合物的氧化. 其电子转移步骤为FeⅥ →FeⅤ→FeⅢ和FeⅥ→FeⅣ→FeⅡ.
大部分消毒副产物(DBPs)有潜在的致癌、致畸、致突变的“三致”毒性[16],其中致癌性较强的是卤乙酸(HAAs)、三卤甲烷(THMs)和溴酸盐,致畸和致突变性较强的是卤代乙腈(HANs)、卤化硝基甲烷(HNMs)和卤化氰[17]. 由于潜在的健康风险和饮用水中DBPs的广泛存在,许多国家和组织对饮用水中的DBPs进行了管理,以减轻包括THMs、HAAs在内的多种DBPs造成的健康风险. 2006年,中国颁布了《中国饮用水水质标准》(GB/T5749-2006), 2012年开始实施,共规范了106种污染物,其中DBPs 14种. 从管制的DBP化合物的数量来看,中国饮用水中的DBPs规定比美国更为严格. 地表水作为饮用水供给链的前端,是保证居民用水安全的重要一环. 因此,有必要探究地表水经过不同的氧化消毒工艺之后其DBPs的生成水平.
DBPs的形成一般是通过混凝、絮凝、沉淀和过滤等物理处理单元去除DOM前体来缓解的[18]. 在一些公用事业中,化学氧化剂的预氧化也被用于提高混凝效率以及去除新出现的令人担忧的污染物[19 − 20]. 大多数氧化剂可以选择性地与DOM中的富电子部分(如酚类化合物、烯烃和有机胺)反应[13 − 15],并可改变天然有机物(NOM)的物理/化学性质,甚至使其矿化. 其中,我国使用最广泛的是高锰酸盐(Mn(Ⅶ),酸性条件下氧化还原电位为1.51 V,碱性条件下氧化还原电位为0.56 V )[21],Mn(Ⅶ)可以与水中DOM发生直接和间接的作用,以有效提高对地表水中DOM的去除;高铁酸钾(Fe(Ⅵ),酸性条件下氧化还原电位为2.20 V,碱性条件下氧化还原电位为0.72 V )预氧化是近几年国内外研究热点[13,22],由于Fe(Ⅵ)中六价铁的存在,使得Fe(Ⅵ)具有较强的氧化性,在使用Fe(Ⅵ)预氧化时,不会引入任何有毒有害物质[21].
本研究以浙江东部某水源水(下文简称水源水)为研究对象,旨在从水源水的回用角度出发,探究Mn(Ⅶ)与Fe(Ⅵ)预氧化对水源水中DOM的转化及氯化后对DBPs生成势的影响情况. 主要研究内容包括:(1)不同氧化剂(Fe(Ⅵ)与Mn(Ⅶ))对DOM的荧光转化;(2)Mn(Ⅶ)与Fe(Ⅵ)预氧化对氯化后DBPs生成势的变化,为该水源水的水环境健康构建提供理论依据.
水源水Fe(Ⅵ)与Mn(Ⅶ)预氧化对天然有机物的组成特征及消毒副产物生成势的影响
Effect of Fe(Ⅵ) and Mn(Ⅶ) pre-oxidation of water source water on the composition characteristics of natural organic matter and disinfection by-product generation potential
-
摘要: 溶解有机物(DOM)普遍存在于地表水源中,是饮用水消毒副产物的重要前驱物. 本研究考察了Fe(Ⅵ)与Mn(Ⅶ)预氧化对浙江东部某水源水中DOM的组成特征及消毒副产物生成势的影响. 运用三维荧光光谱(3D-EEMs)分析了两种氧化剂在不同的浓度梯度下对水样进行预氧化后,水样DOM的荧光光谱特性、荧光特征参数和荧光组分等的变化情况,及氯化后消毒副产物(DBPs)的生成情况. 结果表明,水源水水样DOM的来源主要为陆源与内源混合且具有一定的腐殖质化程度,Mn(Ⅶ)和Fe(Ⅵ)预氧化不仅对荧光DOM具有较好的降解效果,对腐殖质类DOM也具有一定的降解作用. 在DBPs的生成势方面,Mn(Ⅶ)预氧化对三氯甲烷(TCM)生成势的变化呈现出先增强后减弱的现象,对二氯乙腈(DCAN)的生成势具有一定的减弱作用. 而Fe(Ⅵ)预氧化对三氯丙酮(1,1,1-TCP)、溴氯乙腈(BCAN)、二溴乙腈(DBAN)和DCAN的生成势均具有明显的降低作用,对二氯一溴甲烷(DCBM)、二溴一氯甲烷(DBCM)和三溴甲烷(TBM)生成势的变化呈现出先增强后减弱的现象. 研究结果推动了水源水氧化消毒工艺的发展并为相关研究提供理论指导.Abstract: Dissolved organic matter (DOM) is commonly found in surface water sources and is an important precursor of drinking water disinfection by-products. In this study, the effects of Fe(Ⅵ) and Mn(Ⅶ) preoxidation on the compositional characteristics and disinfection by-product generation potential of DOM in a water source in eastern Zhejiang were investigated. Three-dimensional fluorescence spectroscopy (3D-EEMs) was used to analyze the changes of fluorescence spectral characteristics, fluorescence characteristic parameters and fluorescence components of DOM in water samples after pre-oxidation of the two oxidants at different concentration gradients, and the generation of disinfection by-products (DBPs) after chlorination. The results showed that the source of DOM in the water samples was mainly mixed with endogenous sources and had a certain degree of humicification, and the pre-oxidation of Mn(Ⅶ) and Fe(Ⅵ) not only had a good degradation effect on fluorescent DOM, but also had a certain degradation effect on humic DOM. As for the generation potential of DBPs, the changes of Mn(Ⅶ) preoxidation on trichloromethane(TCM) generation potential showed an enhancement and then weakening, and the generation potential of dichloroacetonitrile(DCAN) had a certain weakening effect. The Fe(Ⅵ) pre-oxidation had a significant reduction in the generation potential of trichloroacetone(1,1,1-TCP), bromochloro-acetonitrile(BCAN), dibromoacetonitrile (DBAN) and DCAN, and an enhancement and then weakening in the generation potential of dichlorobromomethane (DCBM), dibromochloromethane (DBCM) and tribromomethane (TBM). The results of the study promote the development of oxidative disinfection process for water sources and provide theoretical guidance for related research.
-
图 4 不同浓度Mn(Ⅶ)和Fe(Ⅵ)氧化后水样DOM三维荧光图谱及最大激发/发射波长分布(a)-(b)C1组分及最大Ex/Em;(c)-(d)C2组分及最大Ex/Em;(e)-(f)C3组分及最大Ex/Em;
Figure 4. 3D-EEM spectrum and maximum excitation/emission wavelength distribution of DOM sfter oxidized by different concentrations of Mn(Ⅶ) and Fe(Ⅵ) (a)-(b) C1 component and maximum Ex/Em; (c)-(d) C2 component and maximum Ex/Em; (e)-(f) C3 component and maximum Ex/Em
表 1 荧光特征参数的计算及光谱参数描述
Table 1. Description of fluorescence analysis methods and spectrum parameters
荧光
Fluorescence计算方法
Calculation method指示参数
Index parametersFI Ex=370 nm 时,Em 在470 nm 处和520 nm处的荧光强度比值 FI<1.4时,DOM主要为陆源输入;当1.4<FI<1.9时,DOM具有内源释放与外源输入的双重特征;当FI>1.9时,DOM主要来内源输入[30 − 31] BIX Ex=310 nm 时,Em 在380 nm与430 nm 处荧光强度的比值 BIX>1.0时,表示DOM主要为藻类或细菌等自生来源(内源)且有机质为新近产生;当0.8<BIX<1.0时,说明DOM具有较强的自生源特征;BIX<0.8时,主要为陆源输入[32] HIX Ex=254 nm 时,Em 在435—480 nm和300—345 nm区间最大荧光强度之比[33] 当HIX<3时,表示腐殖化程度弱且有新近自生源,数值越高表明腐殖化程度越高[34] -
[1] LEE Y, von GUNTEN U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical)[J]. Water Research, 2010, 44(2): 555-566. doi: 10.1016/j.watres.2009.11.045 [2] GRÜNWALD A, ŠŤASTNÝ B, SLAVÍČKOVÁ K, et al. Formation of haloforms during chlorination of natural waters[J]. Acta Polytechnica, 2002, 42(2): 234-243. [3] RICHARDSON S D. The role of GC-MS and LC-MS in the discovery of drinking water disinfection by-products[J]. Journal of Environmental Monitoring: JEM, 2002, 4(1): 1-9. doi: 10.1039/b105578j [4] 张盛军, 张大钰, 董燕, 等. 二氧化氯消毒副产物的生成规律研究[J]. 中国给水排水, 2013, 29(9): 70-71, 76. ZHANG S J, ZHANG D Y, DONG Y, et al. Formation rule of chlorine dioxide disinfection by-products[J]. China Water & Wastewater, 2013, 29(9): 70-71, 76 (in Chinese).
[5] 朱红霞, 薛荔栋, 刘进斌, 等. 含氯消毒副产物的种类、危害与地表水污染现状[J]. 环境科学研究, 2020, 33(7): 1640-1648. doi: 10.13198/j.issn.1001-6929.2020.06.14 ZHU H X, XUE L D, LIU J B, et al. Types, hazards and pollution status of chlorinated disinfection by-products in surface water[J]. Research of Environmental Sciences, 2020, 33(7): 1640-1648 (in Chinese). doi: 10.13198/j.issn.1001-6929.2020.06.14
[6] 许春凤, 马铃, 周智勇, 等. 次氯酸钠在饮用水消毒方面的应用[J]. 西南给排水, 2015, 37(2): 3. XU C F, MA L, ZHOU Z Y, et al. Application of sodium hypochlorite in drinking water disinfection [J]. Southwest Water Supply and Drainage, 2015, 37(2): 3(in Chinese).
[7] PERNET-COUDRIER B, CLOUZOT L, VARRAULT G, et al. Dissolved organic matter from treated effluent of a major wastewater treatment plant: Characterization and influence on copper toxicity[J]. Chemosphere, 2008, 73(4): 593-599. doi: 10.1016/j.chemosphere.2008.05.064 [8] YAO X, ZHANG Y L, ZHU G W, et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries[J]. Chemosphere, 2011, 82(2): 145-155. doi: 10.1016/j.chemosphere.2010.10.049 [9] TANG J, SHI T Z, WU X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122: 154-161. doi: 10.1016/j.chemosphere.2014.11.032 [10] 何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372. doi: 10.13671/j.hjkxxb.2015.0117 HE W, BAI Z L, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372 (in Chinese). doi: 10.13671/j.hjkxxb.2015.0117
[11] KAMJUNKE N, von TÜMPLING W, HERTKORN N, et al. A new approach for evaluating transformations of dissolved organic matter (DOM) via high-resolution mass spectrometry and relating it to bacterial activity[J]. Water Research, 2017, 123: 513-523. doi: 10.1016/j.watres.2017.07.008 [12] 任志敏, 李雅馨月, 林子琛, 等. 光谱法在城市污水溶解性有机物处理中的应用[J]. 科技创新与应用, 2021, 11(25): 180-182. REN Z M, LI Y, LIN Z C, et al. Application of spectroscopy in the treatment of dissolved organic matter in municipal sewage[J]. Technology Innovation and Application, 2021, 11(25): 180-182 (in Chinese).
[13] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research[J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1/2/3): 178-242. [14] KUNDU B, RICHARDSON S D, SWARTZ P D, et al. Mutagenicity in Salmonella of halonitromethanes: A recently recognized class of disinfection by-products in drinking water[J]. Mutation Research, 2004, 562(1/2): 39-65. [15] LIU H J, LIU R P, TIAN C, et al. Removal of natural organic matter for controlling disinfection by-products formation by enhanced coagulation: A case study[J]. Separation and Purification Technology, 2012, 84: 41-45. doi: 10.1016/j.seppur.2011.07.009 [16] DONG H Y, ZHANG H F, WANG Y, et al. Disinfection by-product (DBP) research in China: Are we on the track?[J]. Journal of Environmental Sciences, 2021, 110: 99-110. doi: 10.1016/j.jes.2021.03.023 [17] von GUNTEN U. Oxidation processes in water treatment: Are we on track?[J]. Environmental Science & Technology, 2018, 52(9): 5062-5075. [18] SHARMA V K. Ferrate(Ⅵ) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism[J]. Coordination Chemistry Reviews, 2013, 257((2): ): 495-510. doi: 10.1016/j.ccr.2012.04.014 [19] GAN W H, GE Y X, ZHONG Y, et al. The reactions of chlorine dioxide with inorganic and organic compounds in water treatment: Kinetics and mechanisms[J]. Environmental Science: Water Research & Technology, 2020, 6(9): 2287-2312. [20] LI J, PANG S Y, WANG Z, et al. Oxidative transformation of emerging organic contaminants by aqueous permanganate: Kinetics, products, toxicity changes, and effects of Manganese products[J]. Water Research, 2021, 203: 117513. doi: 10.1016/j.watres.2021.117513 [21] SHARMA V K, TRIANTIS T M, ANTONIOU M G, et al. Destruction of microcystins by conventional and advanced oxidation processes: A review[J]. Separation and Purification Technology, 2012, 91: 3-17. doi: 10.1016/j.seppur.2012.02.018 [22] 李昂, 林英姿, 朱洋, 等. 饮用水处理中常用预氧化剂的种类及特点[J]. 辽宁化工, 2020, 49(1): 57-59, 61. doi: 10.14029/j.cnki.issn1004-0935.2020.01.013 LI A, LIN Y Z, ZHU Y, et al. Types and characteristics of common preoxidants in drinking water treatment[J]. Liaoning Chemical Industry, 2020, 49(1): 57-59, 61 (in Chinese). doi: 10.14029/j.cnki.issn1004-0935.2020.01.013
[23] HASHIMOTO K, YAMASHITA M. Seasonal variation in quality and chemical composition of the muscles of the spotted mackerel Scomber australasicus and Pacific mackerel S. japonicus[J]. Fisheries Science, 2019, 85(4): 767-775. doi: 10.1007/s12562-019-01324-0 [24] HE X S, XI B D, CUI D Y, et al. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting[J]. Journal of Hazardous Materials, 2014, 268: 256-263. doi: 10.1016/j.jhazmat.2014.01.030 [25] XIAO X, XI B D, HE X S, et al. Redox properties and dechlorination capacities of landfill-derived humic-like acids[J]. Environmental Pollution, 2019, 253: 488-496. doi: 10.1016/j.envpol.2019.07.044 [26] 董永成. 武进区地表水水质分布特性及其荧光溶解性有机物来源解析[D]. 上海: 华东理工大学, 2020: 95. DONG Y C. Characteristics of water quality and source analysis of fluorescent dissolved organic material in Wujin district surface water[D]. Shanghai: East China University of Science and Technology, 2020: 95 (in Chinese)
[27] SHANG Y X, SONG K S, JACINTHE P A, et al. Characterization of CDOM in reservoirs and its linkage to trophic status assessment across China using spectroscopic analysis[J]. Journal of Hydrology, 2019, 576: 1-11. doi: 10.1016/j.jhydrol.2019.06.028 [28] WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review[J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021 [29] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water[J]. Environmental Science & Technology, 2008, 42(22): 8330-8338. [30] McKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038 [31] 白璐, 徐雄, 刘权震, 等. 武汉市不同类型天然水体中溶解性有机质的三维荧光光谱特征[J]. 光谱学与光谱分析, 2022, 42(5): 1642-1647. BAI L, XU X, LIU Q Z, et al. Characterization and analysis of dissolved organic matter in different types of natural water in Wuhan by three-dimensional fluorescence spectra[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1642-1647 (in Chinese).
[32] JAFFÉ R, BOYER J N, LU X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry, 2004, 84(3/4): 195-210. [33] 张洪. 毛乌素沙地地表水、地下水和矿井水的可溶性有机碳光谱特征[D]. 西安: 西安建筑科技大学, 2021: 74. HANG H. Spectral characteristics of DOC in surface water, groundwater and mine water of maowusu Shamo[D]. Xi'an: Xi'an University of Architecture and Technology, 2021: 74 (in Chinese).
[34] 何杰, 李学艳, 林欣, 等. 光谱特征法辨识不同污染景观河道中溶解性有机物的组分与来源[J]. 环境科学学报, 2021, 41(3): 1000-1010. HE J, LI X Y, LIN X, et al. Spectral feature method was used to identify the components and sources of dissolved organic matter in different polluted landscape channels[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1000-1010 (in Chinese).
[35] 杨欣, 吴支行, 叶寅, 等. 店埠河农业小流域水体溶解性有机质三维荧光光谱的平行因子分析[J]. 光谱学与光谱分析, 2022, 42(3): 978-983. YANG X, WU Z H, YE Y, et al. Parallel factor analysis of fluorescence excitation emission matrix spectroscopy of DOM in waters of agricultural watershed of dianbu river[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 978-983 (in Chinese).
[36] HE W, HUR J. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter[J]. Water Research, 2015, 83: 217-226. doi: 10.1016/j.watres.2015.06.044 [37] 周石磊, 孙悦, 黄廷林, 等. 周村水库大气湿沉降氮磷及溶解性有机物特征[J]. 水资源保护, 2020, 36(3): 52-59. ZHOU S L, SUN Y, HUANG T L, et al. Characteristics of nitrogen, phosphorus and dissolved organic matter in atmospheric wet deposition of Zhoucun Reservoir[J]. Water Resources Protection, 2020, 36(3): 52-59 (in Chinese).
[38] 刘堰杨, 秦纪洪, 刘琛, 等. 基于三维荧光及平行因子分析的川西高原河流水体CDOM特征[J]. 环境科学, 2018, 39(2): 720-728. doi: 10.13227/j.hjkx.201708208 LIU Y Y, QIN J H, LIU C, et al. Characteristics of chromophoric dissolved organic matter(CDOM) in rivers of western Sichuan Plateau based on EEM-PARAFAC analysis[J]. Environmental Science, 2018, 39(2): 720-728 (in Chinese). doi: 10.13227/j.hjkx.201708208
[39] 简正军, 徐健. 基于三维荧光光谱的鄱阳湖湿地水体有色可溶性有机物组成特征和来源[J]. 环境科学学报, 2022, 42(2): 213-223. doi: 10.13671/j.hjkxxb.2021.0458 JIAN Z J, XU J. Composition characteristics and source of chromophoric dissolved organic matter in Poyang Lake wetland based on three-dimensional fluorescence excitation-emission matrix spectroscopy[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 213-223 (in Chinese). doi: 10.13671/j.hjkxxb.2021.0458
[40] FELLMAN J B, HOOD E, SPENCER R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 2010, 55(6): 2452-2462. doi: 10.4319/lo.2010.55.6.2452 [41] 刘笑菡, 张运林, 殷燕, 等. 三维荧光光谱及平行因子分析法在CDOM研究中的应用[J]. 海洋湖沼通报, 2012(3): 133-145. doi: 10.13984/j.cnki.cn37-1141.2012.03.015 LIU X H, ZHANG Y L, YIN Y, et al. Application of three-dimensional fluorescence spectroscopy and parallel factor analysis in cdom study[J]. Transactions of Oceanology and Limnology, 2012(3): 133-145 (in Chinese). doi: 10.13984/j.cnki.cn37-1141.2012.03.015