-
邻苯二甲酸酯(phthalic acid esters,PAEs)是邻苯二甲酸形成酯的统称,广泛用于聚氯乙烯材料、玩具、食用包装材料、头发喷雾剂、医用血管和胶袋等数百种产品中[1]. PAEs的毒性包括生殖毒性[2]、内分泌毒性[3]以及潜在遗传毒性[4]等. 现已在大气灰尘[5]、土壤[6]、水[7]和人体体液[8]中广泛测得PAEs. 作为一种环境内分泌干扰物,其半衰期很短,大约在24 h到48 h之间[9]. PAEs在人体内的检测浓度存在差异,这可能受到半衰期的影响. 同时,人类日常接触的物品中PAEs含量不同也会对其产生影响[10]. 基于PAEs的毒性作用,目前每个国家都已制定有关邻苯二甲酸酯使用的规定. 欧盟、世界卫生组织、美国、日本和中国均先后将邻苯二甲酸酯类污染物列入“优先控制污染名单”[11]. 其中,美国禁止销售邻苯二甲酸酯浓度超过0.1%的玩具[12];阿根廷、巴西和日本等国家规定玩具中DEHP、DBP等PAEs最大含量不超过0.1%[10];韩国国家科技及标准局表示,从2005年起禁止在玩具和其它儿童产品中使用邻苯二甲酸酯类的增塑剂[13].
近年来,国内外大量研究报道了血液中的PAEs浓度. 一项中国重庆人群血液的调查结果表明,DEHP在人体血液中浓度最高,平均浓度187 μg·L−1,其次为DCHP和DBP,平均浓度为125 μg·L−1 和68 μg·L-1 [14]. 而Onipede[15]关于尼日利亚孕妇血清中的PAEs浓度结果同样显示DEHP是血清中浓度最高的PAEs,高达1108 ng·mL−1. PAEs的潜在毒性以及在人体体液内的广泛存在性,使得检测血液中的PAEs浓度势在必行[16]. 由于PAEs的内分泌干扰性,现有越来越多人研究PAEs与妊娠期糖尿病(gestational diabetes mellitus, GDM)之间的关系. 目前,关于PAEs与妊娠期糖尿病之间的关系至今仍被国内外研究学者热议. 例如,黄文乐等认为产前接触PAEs可能与妊娠期糖尿病及妊娠期高血压疾病等疾病的发生、发展密切相关[17]. Kuo等在审查PAEs是否与糖尿病相关联时,发现现有的流行病学证据并不能得出两者相关的结论[18]. 因此,及时验证PAEs与妊娠期糖尿病之间的关联性是十分必要的.
在这项研究中,2011—2012年在中国杭州采集了158例孕妇血清(104例GDM孕妇和54例未患GDM孕妇),测量了血清中16种PAEs的浓度,同时用logistic和多元线性回归分析血清中PAEs的浓度和GDM以及血糖之间的相关性.
孕妇血清邻苯二甲酸酯浓度与妊娠期糖尿病之间的关系
Relationship between serum concentrations of phthalic acid esters and gestational diabetes mellitus in pregnant women
-
摘要: 邻苯二甲酸酯(PAEs)广泛暴露于人体,对孕妇有许多不利影响. 迄今为止,已发表了许多关于PAE对妊娠期糖尿病(GDM)风险影响的研究,但这些研究的结果存在争议. 本研究共采集了2011年至2012年158例孕妇血清样本(包括104名GDM孕妇和54名未患GDM孕妇),利用气相色谱-质谱(GC-MS)测量了血清中16种PAEs的浓度,并研究了血清中PAEs浓度与孕妇患GDM风险和血糖水平之间的关系. 结果表明,邻苯二甲酸二(2-乙基)己酯(DEHP,平均值为32.95 ng·mL−1)是孕妇血清中浓度最高的PAEs,其次是邻苯二甲酸二丁酯(DBP,平均值为20.55 ng·mL−1)和邻苯二甲酸丁基苄基酯(BBP,平均值为9.89 ng·mL−1). Logistic回归分析结果指出,孕妇血清中的邻苯二甲酸二甲酯(DMP,odds ratio(OR)= 2.39,95%置信区间(CI):1.14,3.85),DBP(OR = 3.54,95% CI:1.25,5.70),邻苯二甲酸二异丁酯(DIBP,OR = 2.32,95% CI:1.78,4.14)和DEHP(OR = 4.19,95% CI:2.89,5.99)浓度与GDM发病率呈显著正相关. 此外,孕妇的血清中DBP、DIBP和DEHP浓度与2 h血糖呈正相关(未调整模型:βDBP = 0.13,95% CI:0.09,0.42,P <0.05;βDIBP = 0.19,95% CI:0.04,0.65,P <0.05;βDEHP = 0.32,95% CI:0.10,0.53,P <0.05. 调整后模型:βDBP = 0.12,95% CI:0.07,0.38,P <0.05;βDIBP = 0.25,95% CI:0.10,0.69,P <;0.05;βDEHP = 0.38,95% CI:0.15,0.58,P <0.05). 总结而言,暴露于DBP、DIBP、DMP和DEHP可能会增加孕妇患GDM的风险.Abstract: Phthalic acid esters (PAEs) are widely present in humans and can have many adverse effects on pregnant women. To date, many studies on the effects of PAEs on the risk of gestational diabetes mellitus (GDM) have been published, but the findings of these studies are controversial. In this study, 158 serum samples (including 104 pregnant women with GDM and 54 pregnant women non-GDM) were collected between 2011 and 2012. The concentrations of 16 PAEs in serum were measured by Gas Chromatography-Mass Spectrometer (GC-MS), and the association between PAEs concentrations in serum and GDM risk and blood glucose level of pregnant women was studied. The results showed that di (2-ethyl) hexyl phthalate (DEHP; mean = 32.95 ng·mL-1) was the abundant PAEs in serum, followed by dibutyl phthalate (DBP; mean = 20.55 ng·mL-1) and butyl benzyl phthalate (BBP; mean = 9.89 ng·mL-1). Logistic regression analysis indicated that dimethyl phthalate (DMP; odd ratio (OR) = 2.39, 95% confidence interval (CI): 1.14, 3.85), DBP (OR = 3.54, 95% CI: 1.25, 5.70), di-isobutyl phthalate (DIBP; OR = 2.32, 95% CI: 1.78, 4.14), and DEHP (OR = 4.19, 95% CI: 2.89, 5.99) concentrations in serum were significant positively associated with GDM. In addition, the concentrations of DBP, DIBP, and DEHP in serum of pregnant women were positively associated with 2-hour blood glucose (Crude Model: βDBP = 0.13, 95% CI: 0.09, 0.42, P <0.05; βDIBP = 0.19, 95% CI: 0.04, 0.65, P <0.05; βDEHP = 0.32, 95% CI: 0.10, 0.53, P <0.05. Adjusted Model: βDBP = 0.12, 95% CI: 0.07, 0.38, P <0.05; βDIBP = 0.25, 95% CI: 0.10, 0.69, P <0.05; βDEHP = 0.38, 95% CI: 0.15, 0.58, P <0.05). Overall, the results showed that exposure to DBP, DIBP, DMP, and DEHP may increase the risk of GDM in pregnant women.
-
表 1 16种邻苯二甲酸酯及其内标定量离子对
Table 1. 16 phthalate substances monitored in the present study and their acronyms,parent ions and product ions
化合物
Compounds母离子m/z
Parent ion子离子m/z
Product ion标样 DMP 163 77, 194 DEP 149 177, 105 DIBP 149 223, 104 DBP 149 223, 105 DMEP 149 149, 104 BMPP 149 167, 85 DEEP 149 149, 104 DPP 149 237, 219 DHXP 149 251, 104 BBP 149 91, 216 DBEP 149 101, 85 DCHP 149 167, 249 DEHP 149 167, 279 DPhP 225 77, 104 DNOP 149 279, 104 DNP 149 293, 167 内标 D4-DMP 167 77, 198 D4-DEP 167 181, 109 D4-DIBP 153 227, 108 D4-DBP 153 227, 109 D4-DMEP 153 153, 108 D4-BMPP 153 171, 85 D4-DEEP 153 153, 108 D4-DPP 153 241, 223 D4-DHXP 153 255, 108 D4-BBP 153 91, 210 D4-DBEP 153 105, 85 D4-DCHP 153 171, 253 D4-DEHP 153 171, 283 D4-DPhP 229 77, 108 D4-DNOP 153 283, 108 D4-DNP 153 297, 171 表 2 人口统计信息表(n = 158)
Table 2. Demographic characteristics of study population(n = 158)
GDM组
(n = 104)未患GDM组
(n = 54)P值 年龄/(岁)a 0.034* 平均值 32 ± 4.7 31 ± 4.6 ≤30 14(13.4%) 27(50.0%) >30 90(86.6%) 27(50.0%) BMI /(kg·m−2)a 30.38 ± 3.43 27.04 ± 3.30 0.041* <18.5 0(0%) 0(0%) 18.5—24 21(20.2%) 4(7.4%) >24 83(79.8%) 50(92.6%) 教育程度b 0.373 大学及以上 64(61.7%) 30(55.5%) 高中 32(30.7%) 16(29.6%) 高中以下 8(7.6%) 8(14.9%) 产次b 0.067 0 100(96.2%) 50(92.6%) ≥1 2(1.9%) 1(1.8%) 丢失 2(1.9%) 3(5.6%) 疾病史b 0.258 有 20(19.3%) 3(5.5%) 无 84(80.7%) 51(94.5%) 家族史b 0.483 有 9(8.7%) 10(18.5%) 无 95(91.3%) 44(81.5%) 注:a表示连续变量. 曼-惠特尼检验(Mann-Whitney U检验)用于比较GDM组和未患GDM组之间的差异.b表示分类变量. 卡方检验用于比较GDM组和未患GDM组之间的差异. 错误发现率(FDR)校正后,P <0.05被设定为具有统计学意义且标注*.
Note: a represents continuous variable Mann-Whitney test (Mann-Whitney U test) is used to compare the differences between GDM group and non-GDM group. b represents classification variables. Chi-square test is used to compare the differences between GDM group and non-GDM group After correction for error detection rate (FDR), P <0.05 was set as statistically significant with*.表 3 GDM组和未患GDM组(n = 158)孕妇血清中邻苯二甲酸酯浓度(ng·mL−1)
Table 3. Serum phthalate concentrations (ng·mL−1) in pregnant women in GDM and non-GDM groups (n = 158)
检出率/%
Detection rate平均值 ± 标准差
Mean ± SD中位数
Median25分位
25th75分位
75th95分位
95th范围
RangeGDM (n = 104) DMP 100 1.84 ± 1.21 1.41 1.08 2.16 4.61 0.38—6.43 DEP 100 5.92 ± 4.71 3.96 1.75 10.27 11.92 0.89—20.55 DIBP 100 5.38 ± 2.09 5.43 4.20 6.76 8.92 1.30—11.94 DBP 100 21.32 ± 13.67 17.82 10.41 28.37 50.18 4.89—68.23 DMEP 94 3.35 ± 2.15 2.58 1.38 5.16 7.20 0.38—7.72 BMPP 73 1.55 ± 1.10 1.20 0.82 2.18 3.56 0.29—5.94 DEEP 84 1.82 ± 0.71 1.72 1.30 2.22 3.28 0.89—4.27 DPP 96 2.59 ± 2.22 2.05 1.10 3.64 6.85 0.29—11.63 DHXP 96 4.35 ± 3.12 4.03 1.55 7.00 10.11 0.21—12.85 BBP 91 9.97 ± 5.46 9.64 6.22 13.61 19.26 0.78—22.72 DBEP ND DCHP 91 4.81 ± 1.89 5.08 3.57 6.06 7.77 0.44—9.59 DEHP 100 36.95 ± 15.41 35.46 25.68 48.71 65.43 4.62—75.34 DPHP 93 1.56 ± 1.11 1.42 0.83 1.87 3.29 0.29—8.80 DNOP 94 1.98 ± 1.15 1.72 1.09 2.79 4.21 0.46—5.81 DNP 97 3.40 ± 2.03 2.97 1.80 4.51 8.16 0.73—8.51 未患GDM (n = 54) DMP 100 1.37 ± 0.44 1.38 0.98 1.71 2.09 0.67—2.59 DEP 100 4.48 ± 4.41 2.23 1.78 6.48 11.69 0.89—26.76 DIBP 100 4.20 ± 1.95 4.31 2.30 5.56 8.05 1.31—9.69 DBP 100 19.08 ± 14.22 13.96 6.13 32.02 42.35 4.71—50.48 DMEP 96 3.38 ± 1.32 3.54 2.59 3.94 4.71 0.71—10.10 BMPP 78 1.36 ± 0.64 1.16 0.91 1.63 2.88 0.52—3.34 DEEP 94 1.41 ± 0.37 1.37 1.11 1.66 2.03 0.88—2.46 DPP 100 2.19 ±1.97 2.20 0.30 3.93 5.92 0.33—6.20 DHXP 96 4.06 ± 3.17 2.71 1.07 7.19 9.00 0.25—10.14 BBP 96 9.84 ± 4.80 11.69 6.38 13.94 15.64 0.68—15.86 DBEP ND DCHP 81 2.78 ± 1.51 2.60 1.62 3.86 5.11 0.53—5.82 DEHP 100 26.28 ± 9.21 24.75 7.08 34.96 49.43 3.91—85.71 DPHP 96 1.12 ± 0.64 0.98 0.60 1.68 2.39 0.28—2.52 DNOP 91 1.59 ± 0.99 1.32 0.94 1.85 4.07 0.56—5.61 DNP 98 3.29 ± 2.66 2.00 1.30 4.71 8.85 0.80—9.61 注:ND.,未检出. ND. ,not detected 表 4 GDM孕妇(n = 104)和未患GDM孕妇(n = 54)的血糖和血清中PAEs浓度的线性回归系数β(95%置信区间)
Table 4. Linear regression coefficients β (95% Confidence Interval) for blood glucose and serum concentrations of PAEs in GDM pregnant women (n = 104) and non-GDM pregnant women (n = 54)
空腹血糖
Fasting blood glucose1 h血糖
1-hour blood glucose2 h血糖
2-hour blood glucose未调整β(95% CI) 调整后β(95% CI) 未调整β(95% CI) 调整后β(95% CI) 未调整β(95% CI) 调整后β(95% CI) DMP 0.47(−0.09,1.12) 0.57(−0.19,1.22) 0.50(0.17,1.03) 0.55(0.06,0.83) 0.16(0.02,0.31) 0.34(0.13,0.95) DEP 0.36(−0.05,0.79) 0.11(−0.35,0.43) 0.25(−0.15,0.77) 0.19(−0.19,0.65) 0.18(0.01,0.45) 0.15(−0.03,0.53) DIBP 0.28(−0.01,0.57) 0.07(−0.18,0.43) 0.13(0.03,0.52) 0.39(0.09,0.62) 0.19*(0.04,0.65) 0.25*(0.10,0.69) DBP 0.17(0.04,0.21) 0.15(0.02,0.31) 0.26(0.02,0.64) 0.30(0.12,0.84) 0.13*(0.09,0.42) 0.12*(0.07,0.38) DMEP −0.14(−0.31,0.42) −0.03(−0.31,0.22) −0.06(−0.39,0.27) −0.24(−0.89,0.30) −0.27(−0.92,0.57) −0.12(−0.52,0.37) BMPP −0.18(−0.51,0.74) −0.05(−0.51,0.46) −0.32(−0.19,0.35) −0.25(−0.20,0.34) 0.28(−0.68,0.59) 0.30(−0.54,0.66) DEEP 0.09(−0.47,0.63) 0.14(−0.45,0.70) 0.11(−0.09,0.40) 0.18(0.04,0.35) 0.17(−0.02,0.44) 0.14(0.12,0.40) DPP 0.08(−0.33,0.40) 0.07(−0.31,0.36) −0.14(−0.31,0.41) 0.11(−0.29,0.47) 0.31(−0.16,0.82) 0.35(−0.10,0.86) DHXP 0.13(−0.13,0.37) 0.10(−0.12,0.35) 0.16(−0.21,0.63) 0.15(−0.19,0.58) 0.53(0.13,1.17) 0.50(0.05,0.97) BBP 0.02(−0.30,0.37) 0.05(−0.23,0.40) 0.24(0.07,0.74) 0.14(0.01,0.72) 1.25(0.09,1.64) 1.15(0.09,2.60) DCHP −0.12(−0.45,0.42) −0.07(−0.36,0.34) −0.07(−0.33,0.31) −0.03(−0.24,0.29) −0.34(−0.89,0.16) −0.25(−0.57,1.09) DEHP 0.17(0.08,0.39) 0.13(0.01,0.34) 0.13(0.02,0.34) 0.11(0.03,0.32) 0.32*(0.10,0.53) 0.38*(0.15,0.58) DPHP 0.71(−0.03,1.57) 0.12(−0.02,1.21) 0.65(−0.04,1.48) 0.53(−0.07,1.23) −0.09(−0.19,0.18) −0.13(−0.29,0.23) DNOP 0.32(−0.08,0.38) 0.29(−0.02,0.36) 0.29(−0.14,0.58) 0.20(−0.04,0.47) 0.16(0.02,0.62) 0.25(0.04,0.79) DNP 0.17(0.02,0.53) 0.26(0.04,0.54) 0.21(0.07,0.36) 0.12(0.01,0.27) 0.33(0.09,0.78) 0.27(−0.01,0.43) 注:调整后模型根据年龄、教育程度、BMI(BMI转化为lgBMI)、疾病史和家族史进行了调整. Note: The adjusted model was adjusted according to age, education level, BMI (BMI converted to lgBMI), disease history and family history. 表 5 血清中邻苯二甲酸酯的浓度和GDM之间的相关性
Table 5. Odds ratios and 95% confidence intervals evaluating phthalate serum concentrations
未调整模型
Crude调整后模型
Adjusted发生率(95%置信区间)
OR (95% CI)P 发生率(95%置信区间)
OR (95% CI)P DMP 1.98*(1.07,3.47) 0.029* 2.39*(1.14,3.85) 0.046* DEP 0.72(0.49,1.06) 0.094 0.94(0.82,1.14) 0.142 DIBP 1.62*(1.30,2.76) 0.010* 2.32*(1.78,4.14) 0.036* DBP 1.29*(1.07,2.37) 0.027* 3.54*(1.25,5.70) 0.047* DMEP 0.54(0.32,0.93) 0.058 0.51(0.27,1.00) 0.053 BMPP 0.92(0.73,1.15) 0.468 0.78(0.34,1.81) 0.566 DEEP 3.85(0.47,4.11) 0.236 3.26(0.48,4.66) 0.396 DPP 1.47*(1.08,2.02) 0.047* 1.52(0.97,2.12) 0.065 DHXP 1.04(0.93,1.16) 0.247 1.27(0.85,1.85) 0.250 BBP 1.15(0.92,1.68) 0.158 1.52(0.93,2.47) 0.096 DCHP 4.36(0.71,5.73) 0.842 5.51(0.73,7.08) 0.648 DEHP 3.97*(2.18,5.82) 0.025* 4.19*(2.89,5.99) 0.035* DPHP 0.41(0.15,1.14) 0.087 0.89(0.38,1.62) 0.098 DNOP 1.52(1.09,2.98) 0.462 1.03(0.91,1.14) 0.439 DNP 1.42(0.72,2.75) 0.182 1.28(0.76,2.55) 0.187 *P小于0.05. *P is less than 0.05. -
[1] 张玉环, 雷亚楠, 鲁皓, 等. 食品中邻苯二甲酸酯类塑化剂的检测技术研究进展[J]. 食品安全质量检测学报, 2021, 12(1): 202-209. ZHANG Y H, LEI Y N, LU H, et al. Research progress on the detection of phthalic acid ester plasticizers in food[J]. Journal of Food Safety & Quality, 2021, 12(1): 202-209 (in Chinese).
[2] JOHANSSON H K L, SVINGEN T, FOWLER P A, et al. Environmental influences on ovarian dysgenesis—Developmental windows sensitive to chemical exposures[J]. Nature Reviews Endocrinology, 2017, 13(7): 400-414. doi: 10.1038/nrendo.2017.36 [3] KIM D H, CHOI S M, LIM D S, et al. Risk assessment of endocrine disrupting phthalates and hormonal alterations in children and adolescents[J]. Journal of Toxicology and Environmental Health, Part A, 2018, 81(21): 1150-1164. doi: 10.1080/15287394.2018.1543231 [4] LIN S, KU H Y, SU P H, et al. Phthalate exposure in pregnant women and their children in central Taiwan[J]. Chemosphere, 2011, 82(7): 947-955. doi: 10.1016/j.chemosphere.2010.10.073 [5] WANG Y, WANG F, XIANG L L, et al. Risk assessment of agricultural plastic films based on release kinetics of phthalate acid esters[J]. Environmental Science & Technology, 2021, 55(6): 3676-3685. [6] LI Y T, WANG J, YANG S, et al. Occurrence, health risks and soil-air exchange of phthalate acid esters: A case study in plastic film greenhouses of Chongqing, China[J]. Chemosphere, 2021, 268: 128821. doi: 10.1016/j.chemosphere.2020.128821 [7] WANG L Y, GU Y Y, ZHANG Z M, et al. Contaminant occurrence, mobility and ecological risk assessment of phthalate esters in the sediment-water system of the Hangzhou Bay[J]. Science of the Total Environment, 2021, 770: 144705. doi: 10.1016/j.scitotenv.2020.144705 [8] KARABULUT G, BARLAS N. The possible effects of mono butyl phthalate (MBP) and mono (2-ethylhexyl) phthalate (MEHP) on INS-1 pancreatic beta cells[J]. Toxicology Research, 2021, 10(3): 601-612. doi: 10.1093/toxres/tfab045 [9] ARBUCKLE T E, FISHER M, MacPHERSON S, et al. Maternal and early life exposure to phthalates: The plastics and personal-care products use in pregnancy (P4) study[J]. Science of the Total Environment, 2016, 551/552: 344-356. doi: 10.1016/j.scitotenv.2016.02.022 [10] ASHWORTH M J, CHAPPELL A, ASHMORE E, et al. Analysis and assessment of exposure to selected phthalates found in children’s toys in Christchurch, New Zealand[J]. International Journal of Environmental Research and Public Health, 2018, 15(2): 200. doi: 10.3390/ijerph15020200 [11] 王昱文, 柴淼, 曾甯, 等. 典型废旧塑料处置地土壤中邻苯二甲酸酯污染特征及健康风险[J]. 环境化学, 2016, 35(2): 364-372. doi: 10.7524/j.issn.0254-6108.2016.02.2015072005 WANG Y W, CHAI M, ZENG N, et al. Contamination and health risk of phthalate esters in soils from a typical waste plastic recycling area[J]. Environmental Chemistry, 2016, 35(2): 364-372 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.02.2015072005
[12] WORMUTH M, SCHERINGER M, VOLLENWEIDER M, et al. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?[J]. Risk Analysis: an Official Publication of the Society for Risk Analysis, 2006, 26(3): 803-824. doi: 10.1111/j.1539-6924.2006.00770.x [13] 广龙. 韩儿童用品将禁用邻苯二甲酸酯类增塑剂 [J]. 化工经济与信息, 2005, 9: 18. GUANG L. Phthalate plasticizers to be banned in Korean children's products [J]. Chemical Economic and Technical Information, 2005, 9: 18 (in Chinese).
[14] HUANG Y J, LI J N, GARCIA J M, et al. Phthalate levels in cord blood are associated with preterm delivery and fetal growth parameters in Chinese women[J]. PLoS One, 2014, 9(2): e87430. doi: 10.1371/journal.pone.0087430 [15] ONIPEDE O J, ADEWUYI G O, AYEDE A I, et al. Blood transfusion impact on levels of some phthalate esters in blood, urine and breast milk of some nursing mothers in Ibadan South-Western Nigeria[J]. International Journal of Environmental Analytical Chemistry, 2021, 101(5): 702-718. doi: 10.1080/03067319.2019.1671379 [16] del BUBBA M, ANCILLOTTI C, CHECCHINI L, et al. Determination of phthalate diesters and monoesters in human milk and infant formula by fat extraction, size-exclusion chromatography clean-up and gas chromatography-mass spectrometry detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 148: 6-16. doi: 10.1016/j.jpba.2017.09.017 [17] 黄文乐, 麻艳艳, 钱益宇, 等. 产前邻苯二甲酸酯暴露与妊娠相关疾病的关系[J]. 浙江医学, 2019, 41(21): 2339-2342. HUANG W L, MA Y Y, QIAN Y Y, et al. Relationship between prenatal phthalate exposure and pregnancy-related diseases[J]. Zhejiang Medical Journal, 2019, 41(21): 2339-2342 (in Chinese).
[18] KUO C C, MOON K, THAYER K A, et al. Environmental chemicals and type 2 diabetes: An updated systematic review of the epidemiologic evidence[J]. Current Diabetes Reports, 2013, 13(6): 831-849. doi: 10.1007/s11892-013-0432-6 [19] SUN J, CHEN B, ZHANG L Q, et al. Phthalate ester concentrations in blood serum , urine and endometrial tissues of Chinese endometriosis patients[J]. International Journal of Clinical and Experimental Medicine, 2016, 9(2): 3808-3819 [20] WAN H T, LEUNG P Y, ZHAO Y G, et al. Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations[J]. Journal of Hazardous Materials, 2013, 261: 763-769. doi: 10.1016/j.jhazmat.2013.01.034 [21] CHEN J, LIU H J, QIU Z Q, et al. Analysis of di- n-butyl phthalate and other organic pollutants in Chongqing women undergoing parturition[J]. Environmental Pollution, 2008, 156(3): 849-853. doi: 10.1016/j.envpol.2008.05.019 [22] LIN L, ZHENG L X, GU Y P, et al. Levels of environmental endocrine disruptors in umbilical cord blood and maternal blood of low-birth-weight infants[J]. Chinese Journal of Preventive Medicine, 2008, 42(3): 177-180. [23] LIN Y, WEI J, LI Y Y, et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat[J]. American Journal of Physiology. Endocrinology and Metabolism, 2011, 301(3): E527-E538. doi: 10.1152/ajpendo.00233.2011 [24] CASTRO-CORREIA C, CORREIA-SÁ L, NORBERTO S, et al. Phthalates and type 1 diabetes: Is there any link?[J]. Environmental Science and Pollution Research, 2018, 25(18): 17915-17919. doi: 10.1007/s11356-018-1997-z [25] CHEN H, ZHANG W, RUI B B, et al. Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms[J]. Environmental Toxicology and Pharmacology, 2016, 42: 38-44. doi: 10.1016/j.etap.2015.12.016 [26] GAO H, ZHU B B, HUANG K, et al. Effects of single and combined gestational phthalate exposure on blood pressure, blood glucose and gestational weight gain: A longitudinal analysis[J]. Environment International, 2021, 155: 106677. doi: 10.1016/j.envint.2021.106677 [27] DALES R E, KAURI L M, CAKMAK S. The associations between phthalate exposure and insulin resistance, β-cell function and blood glucose control in a population-based sample[J]. Science of the Total Environment, 2018, 612: 1287-1292. doi: 10.1016/j.scitotenv.2017.09.009 [28] SUN Q, CORNELIS M C, TOWNSEND M K, et al. Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: A prospective investigation in the nurses’ health study (NHS) and NHSII cohorts[J]. Environmental Health Perspectives, 2014, 122(6): 616-623. doi: 10.1289/ehp.1307201 [29] DESVERGNE B, FEIGE J N, CASALS-CASAS C. PPAR-mediated activity of phthalates: A link to the obesity epidemic?[J]. Molecular and Cellular Endocrinology, 2009, 304(1/2): 43-48. [30] DONG R H, ZHAO S Z, ZHANG H, et al. Sex differences in the association of urinary concentrations of phthalates metabolites with self-reported diabetes and cardiovascular diseases in Shanghai adults[J]. International Journal of Environmental Research and Public Health, 2017, 14(6): 598. doi: 10.3390/ijerph14060598 [31] JAMES-TODD T, STAHLHUT R, MEEKER J D, et al. Urinary phthalate metabolite concentrations and diabetes among women in the National Health and Nutrition Examination Survey (NHANES) 2001-2008[J]. Environmental Health Perspectives, 2012, 120(9): 1307-1313. doi: 10.1289/ehp.1104717 [32] LI A J, MARTINEZ-MORAL M P, LABEED AL-MALKI A, et al. Mediation analysis for the relationship between urinary phthalate metabolites and type 2 diabetes via oxidative stress in a population in Jeddah, Saudi Arabia[J]. Environment International, 2019, 126: 153-161. doi: 10.1016/j.envint.2019.01.082 [33] RADKE E G, GALIZIA A, THAYER K A, et al. Phthalate exposure and metabolic effects: A systematic review of the human epidemiological evidence[J]. Environment International, 2019, 132: 104768. doi: 10.1016/j.envint.2019.04.040 [34] JOHN C M, MOHAMED YUSOF N I S, ABDUL AZIZ S H, et al. Maternal cognitive impairment associated with gestational diabetes mellitus-a review of potential contributing mechanisms[J]. International Journal of Molecular Sciences, 2018, 19(12): 3894. doi: 10.3390/ijms19123894 [35] FRIEDMAN J E, KIRWAN J P, JING M, et al. Increased skeletal muscle tumor necrosis factor-alpha and impaired insulin signaling persist in obese women with gestational diabetes mellitus 1 year postpartum[J]. Diabetes, 2008, 57(3): 606-613. doi: 10.2337/db07-1356 [36] USTA M, ERTUĞ E Y, BAYTEKIN Ö, et al. Serum lipid profile and inflammatory status in women with gestational diabetes mellitus[J]. Electronic Journal of General Medicine, 2016, 13(1): 45-52. [37] ZHANG T, WANG S, LI L D, et al. Associating diethylhexyl phthalate to gestational diabetes mellitus via adverse outcome pathways using a network-based approach[J]. Science of the Total Environment, 2022, 824: 153932. doi: 10.1016/j.scitotenv.2022.153932 [38] ARCK P, TOTH B, PESTKA A, et al. Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: From animal models to clinical trials[J]. Biology of Reproduction, 2010, 83(2): 168-176. doi: 10.1095/biolreprod.110.083550 [39] HEUDE B, PELLOUX V, FORHAN A, et al. Association of the Pro12Ala and C1431T variants of PPARγ and their haplotypes with susceptibility to gestational diabetes[J]. The Journal of Clinical Endocrinology & Metabolism, 2011, 96(10): E1656-E1660. [40] McCARTHY F P, DREWLO S, ENGLISH F A, et al. Evidence implicating peroxisome proliferator-activated receptor-γ in the pathogenesis of preeclampsia[J]. Hypertension, 2011, 58(5): 882-887. doi: 10.1161/HYPERTENSIONAHA.111.179440 [41] BERGER J, MOLLER D E. The mechanisms of action of PPARs[J]. Annual Review of Medicine, 2002, 53: 409-435. doi: 10.1146/annurev.med.53.082901.104018