-
多环芳烃(PAHs)广泛分布于大气、土壤、水、生活垃圾等各种环境中,由于具有遗传毒性和致癌活性,它们在食品和环境中的污染水平受到严格监管[1 − 4]. 含氧多环芳烃(oxy-PAHs)、硝基多环芳烃、烷基多环芳烃等衍生物通常与PAHs共同存在,其排放源与PAHs相似,主要包括化石燃料的不完全燃烧、汽车尾气排放以及多环芳烃的光化学与生物转化作用等[5]. 由于具有高极性、高水溶性、低蒸汽压等特点,oxy-PAHs在水、土壤、大气颗粒物等环境中的分布比母体PAHs更为广泛[6 − 7]. 且在各种食物以及电子垃圾等环境中也检测到较高浓度的oxy-PAHs[8 − 9]. 最近研究表明,与PAH相比,许多oxy-PAHs具有更高的遗传毒性、促肿瘤活性、发育毒性、心血管毒性和细胞毒性[10 − 13]. 然而,目前有关oxy-PAHs的毒性作用机制研究主要集中于遗传毒性、发育毒性等,对其促肿瘤活性作用机制的研究甚少.
9-芴酮(9-Fluorenone)是大气和水环境中含量最为丰富的oxy-PAHs之一,在多种环境介质中均有检出. 例如,法国南部地区大气环境中9-Fluorenone含量约占oxy-PAHs总浓度的60%[14]. 汽车尾气颗粒物中9-Fluorenone含量明显高于其他oxy-PAHs[10]. 我国多个地下水样本中均检出大量9-Fluorenone[15]. 对宜昌市化工园区的土壤样品有机污染物进行非靶标筛查中发现了9-Fluorenone的存在[16]. 此外,研究发现9-Fluorenone是矿质土壤和燃烧排放中最丰富的oxy-PAHs之一[17]. 目前,有关9-Fluorenone的毒性研究主要集中于发育毒性、遗传毒性等[18],有关9-Fluorenone的促癌作用研究较少. 本课题组前期研究发现,9-Fluorenone暴露可诱导肺癌细胞EMT的发生进而促进侵袭转移[19],但关于9-Fluorenone的促癌作用机制仍不明确.
Hippo-YAP通路被发现是调节癌细胞存活、增殖、转移、免疫、凋亡等的关键因子[20 − 21]. 与大量动物研究结果一致,美国TCGA(The Cancer Genome Atlas,癌症基因组图谱)项目对9125个肿瘤样本进行了多组学分析,结果表明Hippo通路失调发生在多种人类癌症中[22 − 23]. Hippo信号通路是一个激酶级联通路,主要作用是调节Yes相关蛋白(YAP和TAZ)、转录共激活因子和效应靶标分子. Hippo信号通路开始于肿瘤抑制性丝氨酸/苏氨酸激酶(MST1/2)的激活,然后磷酸化并激活大肿瘤抑制因子(LATS1/2),进而磷酸化并抑制YAP(Yes相关蛋白)向细胞核的转移[24]. 当Hippo信号通路受刺激失活时,MST1/2与LATS1/2的磷酸化激活被抑制,使得未磷酸化的YAP转移至细胞核以调节癌细胞增殖转移等相关靶基因的表达[25]. Hippo通路异常与肿瘤细胞的迁移和侵袭密切相关,Hippo通路的关键效应分子YAP和TAZ的异常积累和核转移在转移性肿瘤中经常发生[26]. YAP作为细胞核内TEAD等转录因子的共激活因子,可以调控肿瘤转移相关基因的表达[27]或者通过激活或抑制MAPK通路、WNT通路等促进肿瘤转移和侵袭[28 − 29]. 此外,Hippo通路失调可以通过诱导EMT和减少细胞之间或细胞与细胞外基质之间的黏附诱导肿瘤侵袭和转移发生[30 − 31]. 本课题组前期研究发现1-硝基芘暴露可以诱导Hippo-YAP通路失活,促进肺癌细胞EMT,诱导转移的发生[32]. 然而,目前仍不清楚oxy-PAHs的促肿瘤作用是否与Hippo通路有关.
为了解9-Fluorenone的促肿瘤作用是否与Hippo-YAP通路有关,本文采用肝癌细胞暴露模型,探究了9-Fluorenone对细胞侵袭、转移等的影响,检测了MST1/2、LATS1/2、YAP等蛋白磷酸化的发生,结合免疫荧光检测了YAP-TEAD的结合,并采用YAP-TEAD阻断剂处理进一步确证了Hippo-YAP通路在9-Fluorenone促肿瘤发生中的关键作用.
含氧多环芳烃促肝癌细胞侵袭转移过程中Hippo通路作用探究
Role of Hippo pathway in promoting invasion and metastasis of liver cancer cells by oxygenated polycyclic aromatic hydrocarbons
-
摘要: 由于氧化官能团的存在,含氧多环芳烃(oxy-PAHs)比母体多环芳烃具有更高的极性、溶解度、迁移率和生物反应活性,在环境中的分布更为广泛. 许多oxy-PAHs具有更高的遗传毒性、促肿瘤活性和发育毒性,而目前关于其促肿瘤活性作用机制的研究较少. Hippo-YAP通路被发现是调节癌细胞免疫、增殖、转移等的关键因子. 本研究基于肝癌细胞暴露模型,对环境含量丰富的含氧多环芳烃(9-芴酮)的促肿瘤作用及Hippo-YAP调控机制进行了探究. 结果发现,较高浓度9-芴酮(9-Fluorenone)暴露可促进肝癌细胞侵袭、迁移及上皮间质转化(EMT)的发生,且Hippo-YAP通路在9-Fluorenone促肿瘤过程中有重要作用. 具体而言,9-Fluorenone暴露可通过诱导Hippo上游激酶MST、LATS以及YAP蛋白的去磷酸化,未磷酸化的YAP可以直接进入细胞核内与TEAD结合,调控下游EMT的发生,进而促进侵袭转移. 本研究结果为含氧多环芳烃的促肿瘤活性研究提供了实验基础,对于全面评估多环芳烃及衍生物的生态和健康风险具有重要参考作用.Abstract: Due to the presence of oxygenated functional groups, oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) possess higher polarity, solubility, mobility, and biological reactivity than their parent PAHs, and are more widely distributed in the environment. Although numerous oxy-PAHs exhibit heightened genotoxicity, carcinogenicity, and developmental toxicity, limited research has been conducted to elucidate the underlying mechanisms responsible for their tumorigenic promotion. Notably, the Hippo-YAP pathway has emerged as a pivotal regulatory process governing cancer cell immunity, proliferation, and metastasis. In this study, the tumor promoting effect of oxy-PAHs (specifically 9-Fluorenone) that are commonly found in the environment, as well as the underlying Hippo-YAP regulation mechanism were investigated by using the liver cancer cell exposure model. The results showed that a high concentration of 9-Fluorenone exposure significantly enhanced the invasion, migration, and epithelial-mesenchymal transition (EMT) of HepG2 cells, and the Hippo-YAP pathway was identified as playing a crucial role in the tumor-promoting process. Specifically, 9-Fluorenone exposure can induce dephosphorylation of upstream kinases in the Hippo pathway, such as MST and LATS, and then induce dephosphorylation of YAP. Consequently, YAP is able to bind to TEAD in the nucleus, thereby regulating the occurrence of EMT and ultimately promoting the invasion and metastasis of cancer cells. This study contributes valuable toxicological evidence supporting the tumor-promoting effect of oxy-PAHs and holds significant reference value for the comprehensive assessment of the ecological and health risks associated with PAHs and their derivatives.
-
Key words:
- oxygenated polycyclic aromatic hydrocarbons /
- invasion and metastasis /
- Hippo /
- EMT
-
图 5 YAP-TEAD抑制剂处理对9-Fluorenone诱导的肝癌细胞EMT和侵袭转移效应的影响(与对照组比较**P<0.01, ***P<0.001; 与9-F组比较 #P<0.05)
Figure 5. The effects of YAP-TEAD inhibitor treatment on EMT and invasion and metastasis of hepatocellular carcinoma cells induced by 9-Fluorenone(**P<0.01,***P<0.001 vs control group;#P<0.05 vs 9-FL group)
表 1 PCR扩增引物序列
Table 1. The primer sequences for PCR amplification
基因名称
Gene name引物序列 (5’-3’)
Primer sequences (5’-3’)β-actin Forward: CTGGAACGGTGAAGGTGACA Reverse: AAGGGACTTCCTGTAACAATGCA E-cadherin Forward: AATGCCGCCATCGCTTAC Reverse: AGGCACCTGACCCTTGTA Fibronectin Forward: AGGAGCACCACCCCAGACATTACT Reverse: CCAGGCCGGGACTCAGGTTAT -
[1] ACHTEN C, ANDERSSON J T. Overview of polycyclic aromatic compounds (PAC)[J]. Polycyclic Aromatic Compounds, 2015, 35(2/3/4): 177-186. [2] SÁNCHEZ-ARÉVALO C M, OLMO-GARCÍA L, FERNÁNDEZ-SÁNCHEZ J F, et al. Polycyclic aromatic hydrocarbons in edible oils: An overview on sample preparation, determination strategies, and relative abundance of prevalent compounds[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 3528-3573. doi: 10.1111/1541-4337.12637 [3] GE Y X, WU S M, YAN K. Concentrations, influencing factors, risk assessment methods, health hazards and analyses of polycyclic aromatic hydrocarbons in dairies: A review[J]. Critical Reviews in Food Science and Nutrition, 2022: DOI: 10.1080/10408398.2022.2028717. [4] ZHANG Y J, CHEN X Q, ZHANG Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to in vivo metabolic transformation[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(2): 1422-1456. doi: 10.1111/1541-4337.12705 [5] ANDERSSON J T, ACHTEN C. Time to say goodbye to the 16 EPA PAHs? toward an up-to-date use of PACs for environmental purposes[J]. Polycyclic Aromatic Compounds, 2015, 35(2/3/4): 330-354. [6] LARA S, VILLANUEVA F, MARTÍN P, et al. Investigation of PAHs, nitrated PAHs and oxygenated PAHs in PM10 urban aerosols. A comprehensive data analysis[J]. Chemosphere, 2022, 294: 133745. doi: 10.1016/j.chemosphere.2022.133745 [7] QIAO M, QI W X, LIU H J, et al. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources[J]. Environment International, 2022, 163: 107232. doi: 10.1016/j.envint.2022.107232 [8] ZASTROW L, JUDAS M, SPEER K, et al. Barbecue conditions affect contents of oxygenated and non-oxygenated polycyclic aromatic hydrocarbons in meat and non-meat patties[J]. Food Chemistry:X, 2022, 14: 100351. doi: 10.1016/j.fochx.2022.100351 [9] MA S T, LIN M Q, TANG J, et al. Occurrence and fate of polycyclic aromatic hydrocarbons from electronic waste dismantling activities: A critical review from environmental pollution to human health[J]. Journal of Hazardous Materials, 2022, 424: 127683. doi: 10.1016/j.jhazmat.2021.127683 [10] CLERGÉ A, Le GOFF J, LOPEZ C, et al. Oxy-PAHs: Occurrence in the environment and potential genotoxic/mutagenic risk assessment for human health[J]. Critical Reviews in Toxicology, 2019, 49(4): 302-328. doi: 10.1080/10408444.2019.1605333 [11] WINCENT E, JÖNSSON M E, BOTTAI M, et al. Aryl hydrocarbon receptor activation and developmental toxicity in zebrafish in response to soil extracts containing unsubstituted and oxygenated PAHs[J]. Environmental Science & Technology, 2015, 49(6): 3869-3877. [12] GEIER M C, CHLEBOWSKI A C, TRUONG L, et al. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons[J]. Archives of Toxicology, 2018, 92(2): 571-586. doi: 10.1007/s00204-017-2068-9 [13] McCARRICK S, CUNHA V, ZAPLETAL O, et al. In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons[J]. Environmental Pollution, 2019, 246: 678-687. doi: 10.1016/j.envpol.2018.12.092 [14] ALBINET A, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): Concentrations and sources[J]. Science of the Total Environment, 2007, 384(1/2/3): 280-292. [15] ZHU T, RAO Z, GUO F, et al. Simultaneous determination of 32 polycyclic aromatic hydrocarbon derivatives and parent PAHs using gas chromatography-mass spectrometry: Application in groundwater screening[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(5): 664-671. doi: 10.1007/s00128-018-2462-x [16] 朱超飞, 武姿辰, 杨文龙, 等. 土壤中有机污染物的气相色谱-四极杆飞行时间质谱非靶标筛查[J]. 环境化学, 2021, 40(2): 662-664. ZHU C F, WU Z C, YANG W L, et al. Non-target screening of organic pollutants in soil based on GC-QTOF/MS[J]. Environmental Chemistry, 2021, 40(2): 662-664.
[17] BANDOWE B A M, LUESO M G, WILCKE W. Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: A comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg)[J]. Chemosphere, 2014, 107: 407-414. doi: 10.1016/j.chemosphere.2014.01.017 [18] YUN Y, ZHANG Y J, LI G K, et al. Embryonic exposure to oxy-polycyclic aromatic hydrocarbon interfere with pancreatic β-cell development in zebrafish via altering DNA methylation and gene expression[J]. The Science of the Total Environment, 2019, 660: 1602-1609. doi: 10.1016/j.scitotenv.2018.12.476 [19] LI D, YUN Y, GAO R. Oxygenated Polycyclic aromatic hydrocarbons (Oxy-PAHs) facilitate lung cancer metastasis by epigenetically regulating the epithelial-to-mesenchymal transition (EMT) [J]. Environmental Pollution, 2019, 255(Pt 2): 113261. [20] LI F L, GUAN K L. The two sides of Hippo pathway in cancer[J]. Seminars in Cancer Biology, 2022, 85: 33-42. doi: 10.1016/j.semcancer.2021.07.006 [21] WANG R C, ZHU G Q. A narrative review for the Hippo-YAP pathway in cancer survival and immunity: The Yin-Yang dynamics[J]. Translational Cancer Research, 2022, 11(1): 262-275. doi: 10.21037/tcr-21-1843 [22] HARVEY K F, ZHANG X M, THOMAS D M. The Hippo pathway and human cancer[J]. Nature Reviews Cancer, 2013, 13(4): 246-257. doi: 10.1038/nrc3458 [23] SANCHEZ-VEGA F, MINA M, ARMENIA J, et al. Oncogenic signaling pathways in the cancer genome atlas[J]. Cell, 2018, 173(2): 321-337. [24] HUANG J B, WU S A, BARRERA J, et al. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP[J]. Cell, 2005, 122(3): 421-434. doi: 10.1016/j.cell.2005.06.007 [25] KOO J H, GUAN K L. Interplay between YAP/TAZ and metabolism[J]. Cell Metabolism, 2018, 28(2): 196-206. doi: 10.1016/j.cmet.2018.07.010 [26] ZHAO B, WEI X M, LI W Q, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control[J]. Genes & Development, 2007, 21(21): 2747-2761. [27] ZHANG H, LIU C Y, ZHA Z Y, et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition[J]. The Journal of Biological Chemistry, 2009, 284(20): 13355-13362. doi: 10.1074/jbc.M900843200 [28] INAMOTO T, AZUMA H, SAKAMOTO T, et al. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases[J]. Cancer Investigation, 2007, 25(7): 574-583. doi: 10.1080/07357900701522471 [29] XU Q, XU H X, LI J P, et al. Growth differentiation factor 15 induces growth and metastasis of human liver cancer stem-like cells via AKT/GSK-3β/β-catenin signaling[J]. Oncotarget, 2017, 8(10): 16972-16987. doi: 10.18632/oncotarget.15216 [30] SHEN J, CAO B B, WANG Y T, et al. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer[J]. Journal of Experimental & Clinical Cancer Research:CR, 2018, 37(1): 175. [31] LI H L, LI Q Y, JIN M J, et al. A review: Hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression[J]. Journal of Cancer Research and Clinical Oncology, 2021, 147(6): 1569-1585. doi: 10.1007/s00432-021-03604-8 [32] GAO R, LI D, YUN Y, et al. Dysfunction of the hippo-yap pathway drives lung cancer metastasis induced by 1-nitropyrene through adhesion molecular activation[J]. Environmental Science & Technology Letters, 2019, 6(5): 270-276. [33] LAYSHOCK J A, WILSON G, ANDERSON K A. Ketone and quinone-substituted polycyclic aromatic hydrocarbons in mussel tissue, sediment, urban dust, and diesel particulate matrices[J]. Environmental Toxicology and Chemistry, 2010, 29(11): 2450-2460. doi: 10.1002/etc.301 [34] BANDOWE B A, WILCKE W. Analysis of polycyclic aromatic hydrocarbons and their oxygen-containing derivatives and metabolites in soils[J]. Journal of Environmental Quality, 2010, 39(4): 1349-1358. doi: 10.2134/jeq2009.0298 [35] GAO R,JIANG Z H,WU X Y,et al. Metabolic regulation of tumor cells exposed to different oxygenated polycyclic aromatic hydrocarbons.[J]. Science of the Total Environment, 2024, 907: 167833. [36] OTSUKI Y, SAYA H, ARIMA Y. Prospects for new lung cancer treatments that target EMT signaling[J]. Developmental Dynamics, 2018, 247(3): 462-472. doi: 10.1002/dvdy.24596 [37] LIU Y, LIU B, ZHANG G Q, et al. Calpain inhibition attenuates bleomycin-induced pulmonary fibrosis via switching the development of epithelial-mesenchymal transition[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2018, 391(7): 695-704. doi: 10.1007/s00210-018-1499-z [38] ZYGULSKA A L, KRZEMIENIECKI K, PIERZCHALSKI P. Hippo pathway - brief overview of its relevance in cancer[J]. Journal of Physiology and Pharmacolog, 2017, 68(3): 311-335. [39] HAN H, NAKAOKA H J, HOFMANN L, et al. The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1[J]. Nature Cell Biology, 2022, 24(1): 74-87. doi: 10.1038/s41556-021-00813-8 [40] AKRIDA I, BRAVOU V, PAPADAKI H. The deadly cross-talk between Hippo pathway and epithelial-mesenchymal transition (EMT) in cancer[J]. Molecular Biology Reports, 2022, 49(10): 10065-10076. doi: 10.1007/s11033-022-07590-z [41] BARRETTE A M, RONK H, JOSHI T, et al. Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor verteporfin in preclinical glioblastoma models[J]. Neuro-oncology, 2022, 24(5): 694-707. doi: 10.1093/neuonc/noab244 [42] GAO R, YUN Y, CAI Z H, et al. PM2.5-associated nitro-PAH exposure promotes tumor cell metastasis through Hippo-YAP mediated transcriptional regulation[J]. The Science of the Total Environment, 2019, 678: 611-617. doi: 10.1016/j.scitotenv.2019.04.420 [43] CHANG J H, LEE Y L, LAIMAN V, et al. Air pollution-regulated E-cadherin mediates contact inhibition of proliferation via the hippo signaling pathways in emphysema[J]. Chemico-Biological Interactions, 2022, 351: 109763. doi: 10.1016/j.cbi.2021.109763 [44] CHUNG Y L, LAIMAN V, TSAO P N, et al. Diesel exhaust particles inhibit lung branching morphogenesis via the YAP/TAZ pathway[J]. The Science of the Total Environment, 2023, 861: 160682. doi: 10.1016/j.scitotenv.2022.160682