[1] |
LEE Y, von GUNTEN U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical)[J]. Water Research, 2010, 44(2): 555-566. doi: 10.1016/j.watres.2009.11.045
|
[2] |
GRÜNWALD A, ŠŤASTNÝ B, SLAVÍČKOVÁ K, et al. Formation of haloforms during chlorination of natural waters[J]. Acta Polytechnica, 2002, 42(2): 234-243.
|
[3] |
RICHARDSON S D. The role of GC-MS and LC-MS in the discovery of drinking water disinfection by-products[J]. Journal of Environmental Monitoring: JEM, 2002, 4(1): 1-9. doi: 10.1039/b105578j
|
[4] |
张盛军, 张大钰, 董燕, 等. 二氧化氯消毒副产物的生成规律研究[J]. 中国给水排水, 2013, 29(9): 70-71, 76.
ZHANG S J, ZHANG D Y, DONG Y, et al. Formation rule of chlorine dioxide disinfection by-products[J]. China Water & Wastewater, 2013, 29(9): 70-71, 76 (in Chinese).
|
[5] |
朱红霞, 薛荔栋, 刘进斌, 等. 含氯消毒副产物的种类、危害与地表水污染现状[J]. 环境科学研究, 2020, 33(7): 1640-1648. doi: 10.13198/j.issn.1001-6929.2020.06.14
ZHU H X, XUE L D, LIU J B, et al. Types, hazards and pollution status of chlorinated disinfection by-products in surface water[J]. Research of Environmental Sciences, 2020, 33(7): 1640-1648 (in Chinese). doi: 10.13198/j.issn.1001-6929.2020.06.14
|
[6] |
许春凤, 马铃, 周智勇, 等. 次氯酸钠在饮用水消毒方面的应用[J]. 西南给排水, 2015, 37(2): 3.
XU C F, MA L, ZHOU Z Y, et al. Application of sodium hypochlorite in drinking water disinfection [J]. Southwest Water Supply and Drainage, 2015, 37(2): 3(in Chinese).
|
[7] |
PERNET-COUDRIER B, CLOUZOT L, VARRAULT G, et al. Dissolved organic matter from treated effluent of a major wastewater treatment plant: Characterization and influence on copper toxicity[J]. Chemosphere, 2008, 73(4): 593-599. doi: 10.1016/j.chemosphere.2008.05.064
|
[8] |
YAO X, ZHANG Y L, ZHU G W, et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries[J]. Chemosphere, 2011, 82(2): 145-155. doi: 10.1016/j.chemosphere.2010.10.049
|
[9] |
TANG J, SHI T Z, WU X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122: 154-161. doi: 10.1016/j.chemosphere.2014.11.032
|
[10] |
何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372. doi: 10.13671/j.hjkxxb.2015.0117
HE W, BAI Z L, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372 (in Chinese). doi: 10.13671/j.hjkxxb.2015.0117
|
[11] |
KAMJUNKE N, von TÜMPLING W, HERTKORN N, et al. A new approach for evaluating transformations of dissolved organic matter (DOM) via high-resolution mass spectrometry and relating it to bacterial activity[J]. Water Research, 2017, 123: 513-523. doi: 10.1016/j.watres.2017.07.008
|
[12] |
任志敏, 李雅馨月, 林子琛, 等. 光谱法在城市污水溶解性有机物处理中的应用[J]. 科技创新与应用, 2021, 11(25): 180-182.
REN Z M, LI Y, LIN Z C, et al. Application of spectroscopy in the treatment of dissolved organic matter in municipal sewage[J]. Technology Innovation and Application, 2021, 11(25): 180-182 (in Chinese).
|
[13] |
RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research[J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1/2/3): 178-242.
|
[14] |
KUNDU B, RICHARDSON S D, SWARTZ P D, et al. Mutagenicity in Salmonella of halonitromethanes: A recently recognized class of disinfection by-products in drinking water[J]. Mutation Research, 2004, 562(1/2): 39-65.
|
[15] |
LIU H J, LIU R P, TIAN C, et al. Removal of natural organic matter for controlling disinfection by-products formation by enhanced coagulation: A case study[J]. Separation and Purification Technology, 2012, 84: 41-45. doi: 10.1016/j.seppur.2011.07.009
|
[16] |
DONG H Y, ZHANG H F, WANG Y, et al. Disinfection by-product (DBP) research in China: Are we on the track?[J]. Journal of Environmental Sciences, 2021, 110: 99-110. doi: 10.1016/j.jes.2021.03.023
|
[17] |
von GUNTEN U. Oxidation processes in water treatment: Are we on track?[J]. Environmental Science & Technology, 2018, 52(9): 5062-5075.
|
[18] |
SHARMA V K. Ferrate(Ⅵ) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism[J]. Coordination Chemistry Reviews, 2013, 257((2): ): 495-510. doi: 10.1016/j.ccr.2012.04.014
|
[19] |
GAN W H, GE Y X, ZHONG Y, et al. The reactions of chlorine dioxide with inorganic and organic compounds in water treatment: Kinetics and mechanisms[J]. Environmental Science: Water Research & Technology, 2020, 6(9): 2287-2312.
|
[20] |
LI J, PANG S Y, WANG Z, et al. Oxidative transformation of emerging organic contaminants by aqueous permanganate: Kinetics, products, toxicity changes, and effects of Manganese products[J]. Water Research, 2021, 203: 117513. doi: 10.1016/j.watres.2021.117513
|
[21] |
SHARMA V K, TRIANTIS T M, ANTONIOU M G, et al. Destruction of microcystins by conventional and advanced oxidation processes: A review[J]. Separation and Purification Technology, 2012, 91: 3-17. doi: 10.1016/j.seppur.2012.02.018
|
[22] |
李昂, 林英姿, 朱洋, 等. 饮用水处理中常用预氧化剂的种类及特点[J]. 辽宁化工, 2020, 49(1): 57-59, 61. doi: 10.14029/j.cnki.issn1004-0935.2020.01.013
LI A, LIN Y Z, ZHU Y, et al. Types and characteristics of common preoxidants in drinking water treatment[J]. Liaoning Chemical Industry, 2020, 49(1): 57-59, 61 (in Chinese). doi: 10.14029/j.cnki.issn1004-0935.2020.01.013
|
[23] |
HASHIMOTO K, YAMASHITA M. Seasonal variation in quality and chemical composition of the muscles of the spotted mackerel Scomber australasicus and Pacific mackerel S. japonicus[J]. Fisheries Science, 2019, 85(4): 767-775. doi: 10.1007/s12562-019-01324-0
|
[24] |
HE X S, XI B D, CUI D Y, et al. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting[J]. Journal of Hazardous Materials, 2014, 268: 256-263. doi: 10.1016/j.jhazmat.2014.01.030
|
[25] |
XIAO X, XI B D, HE X S, et al. Redox properties and dechlorination capacities of landfill-derived humic-like acids[J]. Environmental Pollution, 2019, 253: 488-496. doi: 10.1016/j.envpol.2019.07.044
|
[26] |
董永成. 武进区地表水水质分布特性及其荧光溶解性有机物来源解析[D]. 上海: 华东理工大学, 2020: 95.
DONG Y C. Characteristics of water quality and source analysis of fluorescent dissolved organic material in Wujin district surface water[D]. Shanghai: East China University of Science and Technology, 2020: 95 (in Chinese)
|
[27] |
SHANG Y X, SONG K S, JACINTHE P A, et al. Characterization of CDOM in reservoirs and its linkage to trophic status assessment across China using spectroscopic analysis[J]. Journal of Hydrology, 2019, 576: 1-11. doi: 10.1016/j.jhydrol.2019.06.028
|
[28] |
WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review[J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021
|
[29] |
RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water[J]. Environmental Science & Technology, 2008, 42(22): 8330-8338.
|
[30] |
McKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038
|
[31] |
白璐, 徐雄, 刘权震, 等. 武汉市不同类型天然水体中溶解性有机质的三维荧光光谱特征[J]. 光谱学与光谱分析, 2022, 42(5): 1642-1647.
BAI L, XU X, LIU Q Z, et al. Characterization and analysis of dissolved organic matter in different types of natural water in Wuhan by three-dimensional fluorescence spectra[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1642-1647 (in Chinese).
|
[32] |
JAFFÉ R, BOYER J N, LU X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry, 2004, 84(3/4): 195-210.
|
[33] |
张洪. 毛乌素沙地地表水、地下水和矿井水的可溶性有机碳光谱特征[D]. 西安: 西安建筑科技大学, 2021: 74.
HANG H. Spectral characteristics of DOC in surface water, groundwater and mine water of maowusu Shamo[D]. Xi'an: Xi'an University of Architecture and Technology, 2021: 74 (in Chinese).
|
[34] |
何杰, 李学艳, 林欣, 等. 光谱特征法辨识不同污染景观河道中溶解性有机物的组分与来源[J]. 环境科学学报, 2021, 41(3): 1000-1010.
HE J, LI X Y, LIN X, et al. Spectral feature method was used to identify the components and sources of dissolved organic matter in different polluted landscape channels[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1000-1010 (in Chinese).
|
[35] |
杨欣, 吴支行, 叶寅, 等. 店埠河农业小流域水体溶解性有机质三维荧光光谱的平行因子分析[J]. 光谱学与光谱分析, 2022, 42(3): 978-983.
YANG X, WU Z H, YE Y, et al. Parallel factor analysis of fluorescence excitation emission matrix spectroscopy of DOM in waters of agricultural watershed of dianbu river[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 978-983 (in Chinese).
|
[36] |
HE W, HUR J. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter[J]. Water Research, 2015, 83: 217-226. doi: 10.1016/j.watres.2015.06.044
|
[37] |
周石磊, 孙悦, 黄廷林, 等. 周村水库大气湿沉降氮磷及溶解性有机物特征[J]. 水资源保护, 2020, 36(3): 52-59.
ZHOU S L, SUN Y, HUANG T L, et al. Characteristics of nitrogen, phosphorus and dissolved organic matter in atmospheric wet deposition of Zhoucun Reservoir[J]. Water Resources Protection, 2020, 36(3): 52-59 (in Chinese).
|
[38] |
刘堰杨, 秦纪洪, 刘琛, 等. 基于三维荧光及平行因子分析的川西高原河流水体CDOM特征[J]. 环境科学, 2018, 39(2): 720-728. doi: 10.13227/j.hjkx.201708208
LIU Y Y, QIN J H, LIU C, et al. Characteristics of chromophoric dissolved organic matter(CDOM) in rivers of western Sichuan Plateau based on EEM-PARAFAC analysis[J]. Environmental Science, 2018, 39(2): 720-728 (in Chinese). doi: 10.13227/j.hjkx.201708208
|
[39] |
简正军, 徐健. 基于三维荧光光谱的鄱阳湖湿地水体有色可溶性有机物组成特征和来源[J]. 环境科学学报, 2022, 42(2): 213-223. doi: 10.13671/j.hjkxxb.2021.0458
JIAN Z J, XU J. Composition characteristics and source of chromophoric dissolved organic matter in Poyang Lake wetland based on three-dimensional fluorescence excitation-emission matrix spectroscopy[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 213-223 (in Chinese). doi: 10.13671/j.hjkxxb.2021.0458
|
[40] |
FELLMAN J B, HOOD E, SPENCER R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 2010, 55(6): 2452-2462. doi: 10.4319/lo.2010.55.6.2452
|
[41] |
刘笑菡, 张运林, 殷燕, 等. 三维荧光光谱及平行因子分析法在CDOM研究中的应用[J]. 海洋湖沼通报, 2012(3): 133-145. doi: 10.13984/j.cnki.cn37-1141.2012.03.015
LIU X H, ZHANG Y L, YIN Y, et al. Application of three-dimensional fluorescence spectroscopy and parallel factor analysis in cdom study[J]. Transactions of Oceanology and Limnology, 2012(3): 133-145 (in Chinese). doi: 10.13984/j.cnki.cn37-1141.2012.03.015
|