-
大环内酯类抗生素(MLs)是一类分子结构中含有12—16碳内酯环的抗菌药物的总称,广泛用于人类疾病治疗和畜牧养殖[1]. 2009年MLs在兽用抗生素中全球销量最高,2010年MLs位居全球抗生素消费量第三[2]. 2013年中国MLs总消费量为42200 t,占抗生素总消费量的26%[3]. 但由于人体和动物对抗生素的吸收率不高,5%—90%的抗生素以母体或代谢产物形态通过尿液或粪便排出体外,成为一类新的环境污染物. 相对于持久性有机污染物(POPs),MLs具有较短的环境半减期,但因其在环境中不断输入,持续存在,从而表现为“假持久性”[4-8]. MLs特别是红霉素、克拉霉素、阿奇霉素和罗红霉素,经常在全球地表水中被检测到[9]. 抗生素在水环境中不仅会选择性抑杀环境微生物,还会诱导细菌产生抗药性,对生态环境和人类健康构成威胁[10]. 2018年,欧盟将红霉素、克拉霉素、阿奇霉素等MLs作为潜在水污染物纳入地表水污染物监测清单,要求成员国严格监控,评估其对水环境的危害和风险[11].
进入环境中的抗生素会发生一系列的转化行为. 其中,光降解是MLs在环境中的重要消减途径[12-15],而且光解强烈影响此类污染物的生态毒理效应[16-18]. 鉴于MLs是一类普遍存在的新污染物,难以被生物降解,且光降解是决定其环境归趋的重要因素,因此,有必要揭示其环境存在状况、分布特征及光化学转化行为,这对于该类污染物的环境归趋和暴露评价具有重要意义[4,19]. 中国是世界上最大的抗生素生产、消费国,水环境中抗生素的浓度和检出频率高于一些发达国家,环境分布特征可能与其他国家不同[20-21]. 并且,鉴于我国水域的多样性,抗生素类污染物在我国水环境中的分布状况和光化学行为可能呈现复杂、多样的特点. 目前,我国水体中MLs的分布特征及环境光化学行为被广泛关注,相关研究水平持续提升,也出现了一些新的发展趋势. 本文将探讨我国水环境中MLs的存在状况、时空分布差异,总结国内外该类抗生素水环境光化学行为的最新研究进展,其中将重点讨论其光降解动力学、影响因素和反应路径等.
我国水体中大环内酯类抗生素的分布特征及环境光化学行为
Occurrence and photochemical behavior of macrolide antibiotics in the aquatic environment of China
-
摘要: 大环内酯类抗生素(MLs)作为一类新型有机污染物,广泛存在于水环境中,表现为“假持久性”,并且能够导致环境菌群抗药性产生. 本文总结大量文献,分析了我国环境水体中MLs的存在状况与浓度水平,并对该类抗生素浓度水平的时空分布差异进行了讨论,同时总结了水环境中MLs光化学行为的最新研究进展,介绍了其光解动力学以及水环境因子对光解的影响,阐述了光降解路径与机理,最后对该类抗生素的环境存在特征及光化学转化研究进行了展望.Abstract: Macrolide antibiotics (MLs), as a new type of organic pollutants, are existing widely in the environment and show pseudo-persistent, which could induce bacterial resistance in the environment. Based on a large number of peer-reviewed literatures, this review analyzed the occurrence and levels of MLs in the aquatic environment of China, as well as the seasonal and spatial distribution. Furthermore, the current research progress on the aqueous photochemical behavior of MLs was explored. The photodegradation kinetics and effects of aqueous environmental factors were discussed. The corresponding photodegradation pathways and mechanisms for typical MLs were summarized. Finally, the research prospects about the environmental occurrence and photochemical transformation of MLs were proposed.
-
Key words:
- macrolide antibiotics /
- occurrence /
- distribution /
- photodegradation /
- photochemical transformation.
-
表 1 我国与其他国家地表水中大环内酯类抗生素的浓度水平对比
Table 1. Concentration difference of macrolide antibiotics in typical surface waters between China and other countries
地表水体
Surface waters采样季节
Sampling seasons水体/(ng·L−1)
Water沉积物/(ng·g−1)
Sediment参考文献
References安徽宛溪河 2018秋 1—147.1
(均值35.73)— [8] 长江嘉陵江重庆段 2018春、秋 ND—1409
(均值75.003)ND—866.78
(均值39.758)[24] 山东莱州湾小清河 2015春、秋、冬,2017春 ND—223
(均值81.55)— [25] 长江下游 2018秋 ND—30
(均值1.79)ND—6780
(均值400)[26] 北京潮白河 2017冬 <782
(均值36.017)<8.96
(均值1.317)[27] 东海沿海水域 2018春 2.9—77
(均值33.6)0.6—60.3
(均值5.2)[28] 北部湾 2015秋 <0.41—40.7
(均值2.111)<0.013—1.34
(均值0.198)[29] 太湖 2010春 ND—624.8
(均值79.9)ND—120.3
(均值44.6)[23] 西班牙东部地中海 2018夏、秋,2019冬 <5—1617
(均值41.4)— [30] 韩国荣山江 2016春、夏、秋 6.2—475.1
(均值42.7)— [31] 法国阿杜尔河口 — <0.06—<8.1 — [32] 黎巴嫩河流 2016春 <23—2806 — [33] 伊比利亚河 2010秋,2011秋 0.09—153.72
(均值2.172)1.13—23.92
(均值12.543)[34] 美国东南部河流 2009冬季,2010春、夏、秋、冬 0.2—2.7
(中值1.4)— [35] 南非Umgeni河 2013冬、春 0.21—22.57
(中值5.65)— [36] 美国迈阿密河 — 14.7—356 — [37] ND:未检出,not detected;—没有数据,data unavailable. 表 2 不同水溶液中大环内酯类抗生素(MLs)在254 nm、350 nm或(模拟)日光下的摩尔吸光系数(ε)、量子产率(Φ)及反应速率常数(k)
Table 2. Molar absorption coefficients(ε), quantum yields(Φ) and reaction rate constants(k) of the typical macrolide antibiotics in different water solutions measured at 254 nm, 350nm or (simulated) sunlight
化合物
Compounds溶液条件
ConditionΦ/(mol·Einstein−1) k/min−1 参考文献
References254 nm 350 nm 模拟日光
Simulated sunlight254 nm 350 nm 日光
Sunlight罗红霉素 纯水 1.2 × 10−3 2.0 × 10−4 — 1.7 × 10−3 1.2 × 10−4 9.5× 10−5 [85] 淡水 4.9 × 10−2 7.0 × 10−4 — 1.7 × 10−2 3.9× 10−4 2.0× 10−4 海水 1.1 × 10−2 4.0 × 10−4 — 3.0 × 10−2 2.4× 10−4 3.5× 10−4 红霉素 纯水 3.0 × 10−4 2.0 × 10−4 — 3.6 × 10−4 1.1× 10−4 2.1× 10−4 [85] 淡水 3.0 × 10−3 4.0 × 10−4 — 4.5 × 10−3 3.9× 10−4 1.7× 10−4 海水 4.5 × 10−3 7.0 × 10−4 — 2.2 × 10−3 1.5× 10−4 4.8× 10−5 阿奇霉素二水合物A pH 3 1.2 — — 4.7 × 10−1 — — [88] pH 7 1.0 — — 3.9 × 10−1 — — pH 9 4.9 × 10−1 — — 1.9 × 10−1 — — 阿奇霉素二水合物B pH 3 1.8 — — 6.9 × 10−1 — — pH 7 8.1 × 10−1 — — 3.1 × 10−1 — — pH 9 7.3 × 10−1 — — 2.8 × 10−1 — — 游离红霉素A pH 3 9.0 × 10−2 — — 1.0 × 10−1 — — pH 7 5.5 × 10−1 — — 5.9 × 10−1 — — pH 9 1.9 × 10−1 — — 2.1 × 10−1 — — 游离红霉素B pH 3 5.0 × 10−2 — — 5.0 × 10−2 — — pH 7 6.1 × 10−1 — — 6.6 × 10−1 — — pH 9 2.0 × 10−1 — — 2.2 × 10−1 — — 酒石酸泰乐菌素A pH 3 4.0 × 10−2 — — 2.5 — — pH 7 4.0 × 10−2 — — 2.5 — — pH 9 2.0 × 10−2 — — 1.2 — — 酒石酸泰乐菌素B pH 3 2.0 × 10−2 — — 1.4 — — pH 7 3.0 × 10−2 — — 1.7 — — pH 9 1.0 × 10−2 — — 6.7 × 10−1 — — 螺旋霉素 纯水 — — 1.4 × 10−2 3.6 × 10−5 — — [84] 红霉素 纯水 — — 3.5 × 10−3 8.3 × 10−5 — — 克拉霉素 纯水 — — 6.3 × 10−3 1.3 × 10−4 — — 泰乐菌素 纯水 — — 7.6 × 10−3 4.8 × 10−5 — — 红霉素 纯水 — — 5.4 × 10−4 — — — [9] 克拉霉素 纯水 — — 5.6 × 10−5 — — — —没有数据,data unavailable. 表 3 水环境因子对大环内酯类抗生素光降解动力学的影响
Table 3. Effects of aqueous environmental factors on photodegradation kinetics of macrolide antibiotics
水环境因子
Factors化合物
Compounds光源、溶液条件
Light, solution condition对光解影响
Effect参考文献
References天然有机物 罗红霉素、克拉霉素、阿奇霉素、
红霉素1700 W氙灯(λ > 290 nm);pH 7 促进 [9] 罗红霉素 500 W中压汞灯(λ > 290 nm);pH 6、pH 7和pH 8 促进 [15] 罗红霉素 500 W中压汞灯 (λ > 290 nm) 促进 [90] 腐殖酸 罗红霉素 500 W中压汞灯(λ > 290 nm);pH 6、pH 7和pH 8 促进 [15] 罗红霉素 500 W中压汞灯(λ > 290 nm) 促进 [90] 阿奇霉素 500 W氙灯(λ > 290 nm) ;pH 7.3 促进 [77] 罗红霉素、克拉霉素、阿奇霉素、
红霉素太阳光;pH 7 促进 [101] 泰乐菌素 500 W高压汞灯(主波长365 nm) 抑制 [102] 螺旋霉素 250 W高压汞灯 抑制 [103] 罗红霉素、螺旋霉素 250 W高压汞灯(λ > 200 nm) 抑制 [84] 克拉霉素、泰乐菌素 低浓度促进,高浓度抑制 克拉霉素、螺旋霉素 1000 W高压汞灯(λ > 290 nm) 抑制 罗红霉素、泰乐菌素 低浓度促进,高浓度抑制 富里酸 罗红霉素 500 W中压汞灯(λ > 290 nm);pH 6、pH 7和pH 8 促进 [15] NO3− 螺旋霉素 250 W高压汞灯 促进 [103] 阿奇霉素 500 W氙灯(λ > 290 nm) ;pH 6.6 促进 [77] 螺旋霉素、泰乐菌素 250 W高压汞灯(λ > 200 nm) 促进 [84] 罗红霉素 抑制 克拉霉素 低浓度抑制,高浓度促进 罗红霉素、螺旋霉素、泰乐菌素 1000 W高压汞灯(λ > 290 nm) 促进 克拉霉素 低浓度抑制,高浓度促进 罗红霉素 500 W中压汞灯;UV/H2O2;pH 7 抑制 [3] 泰乐菌素 500 W高压汞灯(主波长365 nm) 抑制 [102] NO2− 螺旋霉素、泰乐菌素 250 W高压汞灯(λ > 200 nm) 促进 [84] 罗红霉素 抑制 克拉霉素 低浓度促进,高浓度抑制 罗红霉素、克拉霉素、螺旋霉素、
泰乐菌素1000 W高压汞灯(λ > 290 nm) 抑制 罗红霉素 500 W中压汞灯,UV/H2O2;pH 7 抑制 [3] 螺旋霉素 250 W高压汞灯 抑制 [103] Fe(Ⅲ) 罗红霉素、克拉霉素 中压汞灯(λ > 290 nm) 促进 [78] 螺旋霉素 250 W高压汞灯(λ > 200 nm) 促进 [84] 罗红霉素、克拉霉素、泰乐菌素 抑制 克拉霉素 1000 W高压汞灯(λ > 290 nm) 促进 罗红霉素 抑制 螺旋霉素 低浓度促进,高浓度抑制 泰乐菌素 低浓度抑制,高浓度促进 罗红霉素 500 W中压汞灯,UV/H2O2;pH 7 抑制 [3] Fe(Ⅱ) 克拉霉素 1000 W高压汞灯(λ > 290 nm) 促进 [84] 罗红霉素、螺旋霉素 抑制 泰乐菌素 低浓度抑制,高浓度促进 克拉霉素、泰乐菌素 250 W高压汞灯(λ > 200 nm) 抑制 螺旋霉素 低浓度促进,高浓度抑制 罗红霉素 低浓度抑制,高浓度促进 Cu2+、Mg2+、Cl−、HCO3− 罗红霉素 500 W中压汞灯;UV/H2O2;pH 7 抑制 [3] Ca2+、SO42− 罗红霉素 500 W中压汞灯;UV/H2O2;pH 7 无显著影响 [3] -
[1] SCHLÜSENER M P, BESTER K, SPITELLER M. Determination of antibiotics such as macrolides, ionophores and tiamulin in liquid manure by HPLC-MS/MS [J]. Analytical and Bioanalytical Chemistry, 2003, 375(7): 942-947. doi: 10.1007/s00216-003-1838-9 [2] SENTA I, KRIZMAN-MATASIC I, TERZIC S, et al. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography. A, 2017, 1509: 60-68. doi: 10.1016/j.chroma.2017.06.005 [3] LI W, XU X J, LYU B L, et al. Degradation of typical macrolide antibiotic roxithromycin by hydroxyl radical: Kinetics, products, and toxicity assessment [J]. Environmental Science and Pollution Research International, 2019, 26(14): 14570-14582. doi: 10.1007/s11356-019-04713-1 [4] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为 [J]. 中国科学:化学, 2010, 40(2): 124-135. doi: 10.1360/zb2010-40-2-124 GE L K, ZHANG S Y, XIE Q, et al. Progress in studies on aqueous environmental photochemical behavior of antibiotics [J]. Scientia Sinica Chimica), 2010, 40(2): 124-135(in Chinese). doi: 10.1360/zb2010-40-2-124
[5] JIANG X S, ZHU Y Q, LIU L Q, et al. Occurrence and variations of pharmaceuticals and personal-care products in rural water bodies: A case study of the Taige Canal (2018-2019) [J]. Science of the Total Environment, 2021, 762: 143138. doi: 10.1016/j.scitotenv.2020.143138 [6] YANG L, WANG T Y, ZHOU Y Q, et al. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China [J]. Science of the Total Environment, 2021, 760: 144080. doi: 10.1016/j.scitotenv.2020.144080 [7] ZHAO B, XU J M, ZHANG G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2021, 262: 127741. doi: 10.1016/j.chemosphere.2020.127741 [8] DING Y, CUI K P, LV K, et al. Revealing the hydrological transport and attenuation of 14 antibiotics in a low-flow stream [J]. Science of the Total Environment, 2021, 761: 143288. doi: 10.1016/j.scitotenv.2020.143288 [9] JIA X, LIAN L S, YAN S W, et al. Comprehensive understanding of the phototransformation process of macrolide antibiotics in simulated natural waters [J]. ACS ES& T Water, 2021, 1(4): 938-948. [10] SHAH S Q A, COLQUHOUN D J, NIKULI H L, et al. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania [J]. Environmental Science & Technology, 2012, 46(16): 8672-8679. [11] SENTA I, KOSTANJEVECKI P, KRIZMAN-MATASIC I, et al. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: Possible importance of metabolites, synthesis byproducts, and transformation products [J]. Environmental Science & Technology, 2019, 53(13): 7463-7472. [12] BOREEN A L, ARNOLD W A, MCNEILL K. Photodegradation of pharmaceuticals in the aquatic environment: A review [J]. Aquatic Sciences, 2003, 65(4): 320-341. doi: 10.1007/s00027-003-0672-7 [13] EDHLUND B L, ARNOLD W A, MCNEILL K. Aquatic photochemistry of nitrofuran antibiotics [J]. Environmental Science & Technology, 2006, 40(17): 5422-5427. [14] KNAPP C W, CARDOZA L A, HAWES J N, et al. Fate and effects of enrofloxacin in aquatic systems under different light conditions [J]. Environmental Science & Technology, 2005, 39(23): 9140-9146. [15] 吕宝玲, 李威, 于筱莉, 等. 溶解性有机质对罗红霉素光降解的影响研究 [J]. 环境科学学报, 2019, 39(3): 747-754. LÜ B L, LI W, YU X L, et al. Effect of dissolved organic matter on the photodegradation of roxithromycin [J]. Acta Scientiae Circumstantiae, 2019, 39(3): 747-754(in Chinese).
[16] LATCH D E, PACKER J L, STENDER B L, et al. Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products [J]. Environmental Toxicology and Chemistry, 2005, 24(3): 517-525. doi: 10.1897/04-243R.1 [17] JIAO S J, ZHENG S R, YIN D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J]. Chemosphere, 2008, 73(3): 377-382. doi: 10.1016/j.chemosphere.2008.05.042 [18] JUNG J, KIM Y, KIM J, et al. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna [J]. Ecotoxicology (London, England), 2008, 17(1): 37-45. doi: 10.1007/s10646-007-0174-9 [19] 葛林科, 任红蕾, 鲁建江, 等. 我国环境中新兴污染物抗生素及其抗性基因的分布特征 [J]. 环境化学, 2015, 34(5): 875-883. doi: 10.7524/j.issn.0254-6108.2015.05.2014082501 GE L K, REN H L, LU J J, et al. Occurrence of antibiotics and corresponding resistance genes in the environment of China [J]. Environmental Chemistry, 2015, 34(5): 875-883(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2014082501
[20] LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627: 1195-1208. doi: 10.1016/j.scitotenv.2018.01.271 [21] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [22] LI Z, LI M, ZHANG Z Y, et al. Antibiotics in aquatic environments of China: A review and meta-analysis [J]. Ecotoxicology and Environmental Safety, 2020, 199: 110668. doi: 10.1016/j.ecoenv.2020.110668 [23] XU J, ZHANG Y, ZHOU C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China [J]. Science of the Total Environment, 2014, 497/498: 267-273. doi: 10.1016/j.scitotenv.2014.07.114 [24] WANG G G, ZHOU S H, HAN X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing City, southwest China [J]. Journal of Hazardous Materials, 2020, 389: 122110. doi: 10.1016/j.jhazmat.2020.122110 [25] LI J, CUI M, ZHANG H. Spatial and temporal variations of antibiotics in a tidal river [J]. Environmental Monitoring and Assessment, 2020, 192(6): 336. doi: 10.1007/s10661-020-08313-2 [26] ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in Lower Yangtze River, China [J]. Environmental Pollution, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365 [27] ZHANG Y X, CHEN H Y, JING L J, et al. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river [J]. Science of the Total Environment, 2020, 731: 139128. doi: 10.1016/j.scitotenv.2020.139128 [28] LI F F, CHEN L J, CHEN W D, et al. Antibiotics in coastal water and sediments of the East China Sea: Distribution, ecological risk assessment and indicators screening [J]. Marine Pollution Bulletin, 2020, 151: 110810. doi: 10.1016/j.marpolbul.2019.110810 [29] ZHANG R L, PEI J Y, ZHANG R J, et al. Occurrence and distribution of antibiotics in mariculture farms, estuaries and the coast of the Beibu Gulf, China: Bioconcentration and diet safety of seafood [J]. Ecotoxicology and Environmental Safety, 2018, 154: 27-35. doi: 10.1016/j.ecoenv.2018.02.006 [30] FONSECA E, HERNÁNDEZ F, IBÁÑEZ M, et al. Occurrence and ecological risks of pharmaceuticals in a Mediterranean River in Eastern Spain [J]. Environment International, 2020, 144: 106004. doi: 10.1016/j.envint.2020.106004 [31] NA T W, KANG T W, LEE K H, et al. Distribution and ecological risk of pharmaceuticals in surface water of the Yeongsan River, Republic of Korea [J]. Ecotoxicology and Environmental Safety, 2019, 181: 180-186. doi: 10.1016/j.ecoenv.2019.06.004 [32] MIOSSEC C, LANCELEUR L, MONPERRUS M. Multi-residue analysis of 44 pharmaceutical compounds in environmental water samples by solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry [J]. Journal of Separation Science, 2019, 42(10): 1853-1866. doi: 10.1002/jssc.201801214 [33] MOKH S, EL KHATIB M, KOUBAR M, et al. Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon [J]. Science of the Total Environment, 2017, 609: 830-841. doi: 10.1016/j.scitotenv.2017.07.230 [34] OSORIO V, LARRAÑAGA A, ACEÑA J, et al. Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers [J]. Science of the Total Environment, 2016, 540: 267-277. doi: 10.1016/j.scitotenv.2015.06.143 [35] PADHYE L P, YAO H, KUNG'U F T, et al. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant [J]. Water Research, 2014, 51: 266-276. doi: 10.1016/j.watres.2013.10.070 [36] AGUNBIADE F O, MOODLEY B. Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa [J]. Environmental Monitoring and Assessment, 2014, 186(11): 7273-7291. doi: 10.1007/s10661-014-3926-z [37] PANDITI V R, BATCHU S R, GARDINALI P R. Online solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters [J]. Analytical and Bioanalytical Chemistry, 2013, 405(18): 5953-5964. doi: 10.1007/s00216-013-6863-8 [38] LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review [J]. Environmental Pollution, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003 [39] CHEN H, LIU S, XU X R, et al. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure [J]. Marine Pollution Bulletin, 2015, 90(1/2): 181-187. [40] WANG W X, GU X H, ZHOU L J, et al. Antibiotics in crab ponds of lake Guchenghu Basin, China: Occurrence, temporal variations, and ecological risks [J]. International Journal of Environmental Research and Public Health, 2018, 15(3): 548. doi: 10.3390/ijerph15030548 [41] HUANG F Y, AN Z Y, MORAN M J, et al. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009−2019) [J]. Journal of Hazardous Materials, 2020, 399: 122813. doi: 10.1016/j.jhazmat.2020.122813 [42] 刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展 [J]. 环境工程, 2020, 38(5): 36-42. LIU P X, WANG X, FENG L. Occurrences, resources and risk of antibiotics in aquatic environment: A review [J]. Environmental Engineering, 2020, 38(5): 36-42(in Chinese).
[43] 李辉, 陈瑀, 封梦娟, 等. 南京市饮用水源地抗生素污染特征及风险评估 [J]. 环境科学学报, 2020, 40(4): 1269-1277. LI H, CHEN Y, FENG M J, et al. Pollution characteristics and risk assessment of antibiotics in Nanjing drinking water sources [J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1269-1277(in Chinese).
[44] 廖杰, 魏晓琴, 肖燕琴, 等. 莲花水库水体中抗生素污染特征及生态风险评价 [J]. 环境科学, 2020, 41(9): 4081-4087. LIAO J, WEI X Q, XIAO Y Q, et al. Pollution characteristics and risk assessment of antibiotics in Lianhua reservoir [J]. Environmental Science, 2020, 41(9): 4081-4087(in Chinese).
[45] 陈永山, 章海波, 骆永明, 等. 苕溪流域典型断面底泥14种抗生素污染特征 [J]. 环境科学, 2011, 32(3): 667-672. CHEN Y S, ZHANG H B, LUO Y M, et al. Investigation of 14 selected antibiotics in sediments of the typical cross sections of tiaoxi river [J]. Environmental Science, 2011, 32(3): 667-672(in Chinese).
[46] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China [J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034 [47] YANG J F, YING G G, ZHAO J L, et al. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS [J]. Science of the Total Environment, 2010, 408(16): 3424-3432. doi: 10.1016/j.scitotenv.2010.03.049 [48] LYU J, YANG L S, ZHANG L, et al. Antibiotics in soil and water in China-a systematic review and source analysis [J]. Environmental Pollution, 2020, 266: 115147. doi: 10.1016/j.envpol.2020.115147 [49] PAN C Y, BAO Y Y, XU B T. Seasonal variation of antibiotics in surface water of Pudong New Area of Shanghai, China and the occurrence in typical wastewater sources [J]. Chemosphere, 2020, 239: 124816. doi: 10.1016/j.chemosphere.2019.124816 [50] YAO L L, WANG Y X, TONG L, et al. Seasonal variation of antibiotics concentration in the aquatic environment: A case study at Jianghan Plain, central China [J]. Science of the Total Environment, 2015, 527/528: 56-64. doi: 10.1016/j.scitotenv.2015.04.091 [51] 刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价 [J]. 环境科学, 2019, 40(5): 2094-2100. LIU X, WANG Z, WANG X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments [J]. Environmental Science, 2019, 40(5): 2094-2100(in Chinese).
[52] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026 [53] ZHANG R J, ZHANG R L, YU K F, et al. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth [J]. Environmental Pollution, 2018, 232: 450-457. doi: 10.1016/j.envpol.2017.09.064 [54] CHEN Y H, CUI K P, HUANG Q L, et al. Comprehensive insights into the occurrence, distribution, risk assessment and indicator screening of antibiotics in a large drinking reservoir system [J]. Science of the Total Environment, 2020, 716: 137060. doi: 10.1016/j.scitotenv.2020.137060 [55] 王娅南, 黄合田, 彭洁, 等. 贵州草海喀斯特高原湿地水环境中典型抗生素的分布特征 [J]. 环境化学, 2020, 39(4): 975-986. doi: 10.7524/j.issn.0254-6108.2019090103 WANG Y N, HUANG H T, PENG J, et al. Occurrence and distribution of typical antibiotics in the aquatic environment of the wetland Karst plateau in Guizhou [J]. Environmental Chemistry, 2020, 39(4): 975-986(in Chinese). doi: 10.7524/j.issn.0254-6108.2019090103
[56] LIU S, WANG C, WANG P F, et al. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China [J]. Environmental Research, 2021, 198: 110449. doi: 10.1016/j.envres.2020.110449 [57] CHEN L L, LI H P, LIU Y, et al. Distribution, residue level, sources, and phase partition of antibiotics in surface sediments from the inland river: A case study of the Xiangjiang River, south-central China [J]. Environmental Science and Pollution Research International, 2020, 27(2): 2273-2286. doi: 10.1007/s11356-019-06833-0 [58] WANG Y Q, LIU Y, LU S Y, et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period [J]. Environmental Science and Pollution Research International, 2019, 26(28): 28796-28807. doi: 10.1007/s11356-019-06047-4 [59] WANG W X, ZHOU L J, GU X H, et al. Occurrence and distribution of antibiotics in surface water impacted by crab culturing: A case study of Lake Guchenghu, China [J]. Environmental Science and Pollution Research International, 2018, 25(23): 22619-22628. doi: 10.1007/s11356-018-2054-7 [60] 杨俊, 王汉欣, 吴韵斐, 等. 苏州市水环境中典型抗生素污染特征及生态风险评估 [J]. 生态环境学报, 2019, 28(2): 359-368. YANG J, WANG H X, WU Y F, et al. Occurrence, distribution and risk assessment of typical antibiotics in the aquatic environment of Suzhou City [J]. Ecology and Environmental Sciences, 2019, 28(2): 359-368(in Chinese).
[61] 徐晖, 吴明红, 徐刚. 高效液相色谱-串联质谱法对水环境中12种抗生素的检测 [J]. 上海大学学报(自然科学版), 2017, 23(3): 483-490. XU H, WU M H, XU G. Determination of 12 antibiotics in aqueous environment by high performance LC-MS/MS [J]. Journal of Shanghai University (Natural Science Edition), 2017, 23(3): 483-490(in Chinese).
[62] 王大祥, 王倩倩. 淮河流域浉河区水环境中抗生素污染分布特征分析研究 [J]. 环境科学与管理, 2020, 45(3): 63-66. WANG D X, WANG Q Q. Analysis on the distribution of antibiotics pollution in the water environment of Weihe River area in Huaihe River basin [J]. Environmental Science and Management, 2020, 45(3): 63-66(in Chinese).
[63] WANG J W, WEI H, ZHOU X D, et al. Occurrence and risk assessment of antibiotics in the Xi'an section of the Weihe River, northwestern China [J]. Marine Pollution Bulletin, 2019, 146: 794-800. doi: 10.1016/j.marpolbul.2019.07.016 [64] ZHANG G D, LIU X H, LU S Y, et al. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020, 242: 125269. doi: 10.1016/j.chemosphere.2019.125269 [65] LU S, LIN C Y, LEI K, et al. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in Eastern China [J]. Water Research, 2020, 184: 116187. doi: 10.1016/j.watres.2020.116187 [66] LEI K, ZHU Y, CHEN W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment [J]. Environment International, 2019, 130: 104919. doi: 10.1016/j.envint.2019.104919 [67] LI N, ZHANG X B, WU W, et al. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China [J]. Chemosphere, 2014, 111: 327-335. doi: 10.1016/j.chemosphere.2014.03.129 [68] ZHANG L W, DU S Y, ZHANG X, et al. Occurrence, distribution, and ecological risk of pharmaceuticals in a seasonally ice-sealed river: From ice formation to melting [J]. Journal of Hazardous Materials, 2020, 389: 122083. doi: 10.1016/j.jhazmat.2020.122083 [69] JIA J, GUAN Y J, CHENG M Q, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China [J]. Science of the Total Environment, 2018, 642: 1136-1144. doi: 10.1016/j.scitotenv.2018.06.149 [70] CHEN H Y, JING L J, TENG Y G, et al. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks [J]. Science of the Total Environment, 2018, 618: 409-418. doi: 10.1016/j.scitotenv.2017.11.054 [71] DONG D M, ZHANG L W, LIU S, et al. Antibiotics in water and sediments from Liao River in Jilin Province, China: Occurrence, distribution, and risk assessment [J]. Environmental Earth Sciences, 2016, 75(16): 1-10. [72] GE L K, DONG Q Q, HALSALL C, et al. Aqueous multivariate phototransformation kinetics of dissociated tetracycline: Implications for the photochemical fate in surface waters [J]. Environmental Science and Pollution Research International, 2018, 25(16): 15726-15732. doi: 10.1007/s11356-018-1765-0 [73] GE L K, NA G S, ZHANG S Y, et al. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes [J]. Science of the Total Environment, 2015, 527/528: 12-17. doi: 10.1016/j.scitotenv.2015.04.099 [74] LI K, ZHANG P, GE L K, et al. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics [J]. Chemosphere, 2014, 111: 278-282. doi: 10.1016/j.chemosphere.2014.04.052 [75] 黄宏, 李圆杏, 杨红伟. 水环境中抗生素的光降解研究进展 [J]. 环境化学, 2013, 32(7): 1335-1341. doi: 10.7524/j.issn.0254-6108.2013.07.029 HUANG H, LI Y X, YANG H W. Research progress on photodegradation of antibiotics in aqueous solution [J]. Environmental Chemistry, 2013, 32(7): 1335-1341(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.029
[76] WERNER J J, CHINTAPALLI M, LUNDEEN R A, et al. Environmental photochemistry of tylosin: Efficient, reversible photoisomerization to a less-active isomer, followed by photolysis [J]. Journal of Agricultural and Food Chemistry, 2007, 55(17): 7062-7068. doi: 10.1021/jf070101h [77] TONG L, EICHHORN P, PÉREZ S, et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts [J]. Chemosphere, 2011, 83(3): 340-348. doi: 10.1016/j.chemosphere.2010.12.025 [78] VIONE D, FEITOSA-FELIZZOLA J, MINERO C, et al. Phototransformation of selected human-used macrolides in surface water: Kinetics, model predictions and degradation pathways [J]. Water Research, 2009, 43(7): 1959-1967. doi: 10.1016/j.watres.2009.01.027 [79] COGAN S, HAAS Y. Self-sensitized photo-oxidation of Para-indenylidene-dihydropyridine derivatives [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2008, 193(1): 25-32. doi: 10.1016/j.jphotochem.2007.06.003 [80] MARTIN N H, JEFFORD C W. Self-sensitized photo-oxygenation of 1-benzyl-3, 4-dihydroisoquinolines [J]. Helvetica Chimica Acta, 1981, 64(7): 2189-2192. doi: 10.1002/hlca.19810640725 [81] GE L K, CHEN J W, QIAO X L, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: Mechanism and kinetics [J]. Environmental Science & Technology, 2009, 43(9): 3101-3107. [82] GE L K, CHEN J W, WEI X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents [J]. Environmental Science & Technology, 2010, 44(7): 2400-2405. [83] 葛林科. 水中溶解性物质对氯霉素类和氟喹诺酮类抗生素光降解的影响[D]. 大连: 大连理工大学, 2009. GE L K. Effects of aqueous dissolved matter on photodegradation of phenicol and fluoroquinolone antibiotics[D]. Dalian: Dalian University of Technology, 2009(in Chinese).
[84] 常海莎. 大环内酯类抗生素在水体中的光降解及毒性变化研究[D]. 石河子: 石河子大学, 2018. CHANG H S. Study on the photodegradation and change of toxicity of macrolide antibiotics in aqueous environment[D]. Shihezi: Shihezi University, 2018(in Chinese).
[85] BATCHU S R, PANDITI V R, O'SHEA K E, et al. Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate [J]. Science of the Total Environment, 2014, 470/471: 299-310. doi: 10.1016/j.scitotenv.2013.09.057 [86] WANG H L, WANG M, WANG H, et al. Aqueous photochemical degradation of BDE-153 in solutions with natural dissolved organic matter [J]. Chemosphere, 2016, 155: 367-374. doi: 10.1016/j.chemosphere.2016.04.071 [87] QU S, KOLODZIEJ E P, CWIERTNY D M. Phototransformation rates and mechanisms for synthetic hormone growth promoters used in animal agriculture [J]. Environmental Science & Technology, 2012, 46(24): 13202-13211. [88] VOIGT M, JAEGER M. On the photodegradation of azithromycin, erythromycin and tylosin and their transformation products - A kinetic study [J]. Sustainable Chemistry and Pharmacy, 2017, 5: 131-140. doi: 10.1016/j.scp.2016.12.001 [89] LATCH D E, STENDER B L, PACKER J L, et al. Photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine [J]. Environmental Science & Technology, 2003, 37(15): 3342-3350. [90] LI W, LYU B L, LI J P, et al. Phototransformation of roxithromycin in the presence of dissolved organic matter: Characteriazation of the degradation products and toxicity evaluation [J]. Science of the Total Environment, 2020, 733: 139348. doi: 10.1016/j.scitotenv.2020.139348 [91] DODD M C, KOHLER H P, von GUNTEN U. Oxidation of antibacterial compounds by ozone and hydroxyl radical: Elimination of biological activity during aqueous ozonation processes [J]. Environmental Science & Technology, 2009, 43(7): 2498-2504. [92] CHAMBERLAIN E, ADAMS C. Oxidation of sulfonamides, macrolides, and carbadox with free chlorine and monochloramine [J]. Water Research, 2006, 40(13): 2517-2526. doi: 10.1016/j.watres.2006.04.039 [93] VIONE D, MAURINO V, MINERO C, et al. Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution [J]. Environmental Science & Technology, 2005, 39(13): 5066-5075. [94] MILL T. Predicting photoreaction rates in surface waters [J]. Chemosphere, 1999, 38(6): 1379-1390. doi: 10.1016/S0045-6535(98)00540-2 [95] LUO X, WEI X X, CHEN J W, et al. Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies [J]. Water Research, 2019, 166: 115083. doi: 10.1016/j.watres.2019.115083 [96] GE L K, ZHANG P, HALSALL C, et al. The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics: Kinetics, pathways, and comparisons with direct photolysis [J]. Water Research, 2019, 149: 243-250. doi: 10.1016/j.watres.2018.11.009 [97] VOIGT M, SAVELSBERG C, JAEGER M. Photodegradation of the antibiotic spiramycin studied by high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry [J]. Toxicological & Environmental Chemistry, 2017, 99(4): 624-640. [98] LITTER M I, QUICI N. Photochemical advanced oxidation processes for water and wastewater treatment [J]. Recent Patents on Engineering, 2010, 4(3): 217-241. doi: 10.2174/187221210794578574 [99] WANG J L, SONG M R, CHEN B Y, et al. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: Implications to nitrogen removal and analysis [J]. Chemosphere, 2017, 184: 1003-1011. doi: 10.1016/j.chemosphere.2017.06.078 [100] BENSALAH N, KHODARY A, ABDEL-WAHAB A. Kinetic and mechanistic investigations of mesotrione degradation in aqueous medium by Fenton process [J]. Journal of Hazardous Materials, 2011, 189(1/2): 479-485. [101] GOZLAN I, KOREN I. Identification, mechanisms and kinetics of macrolide degradation product formation under controlled environmental conditions [J]. Journal of Environmental Analytical Chemistry, 2016, 3(1): 100171. [102] 张倩, 杨琛, 莫德清, 等. 水溶液性质对泰乐菌素光降解的影响 [J]. 农业环境科学学报, 2014, 33(12): 2444-2449. ZHANG Q, YANG C, MO D Q, et al. Effects of aqueous solution properties on tylosin photolysis [J]. Journal of Agro-Environment Science, 2014, 33(12): 2444-2449(in Chinese).
[103] 常海莎, 闫豫君, 鲁建江, 等. 螺旋霉素在水溶液中的光降解 [J]. 环境化学, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703 CHANG H S, YAN Y J, LU J J, et al. Photodegradation of spiramycin in aqueous solution [J]. Environmental Chemistry, 2018, 37(6): 1343-1350(in Chinese). doi: 10.7524/j.issn.0254-6108.2017091703
[104] TERCERO ESPINOZA L A, NEAMŢU M, FRIMMEL F H. The effect of nitrate, Fe(Ⅲ) and bicarbonate on the degradation of bisphenol A by simulated solar UV-irradiation [J]. Water Research, 2007, 41(19): 4479-4487. doi: 10.1016/j.watres.2007.06.060 [105] NEAMŢU M, POPA D M, FRIMMEL F H. Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol [J]. Journal of Hazardous Materials, 2009, 164(2/3): 1561-1567. [106] HALLADJA S, AMINE-KHODJA A, TER HALLE A, et al. Photolysis of fluometuron in the presence of natural water constituents [J]. Chemosphere, 2007, 69(10): 1647-1654. doi: 10.1016/j.chemosphere.2007.05.035 [107] GE L K, CHEN J W, ZHANG S Y, et al. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions [J]. Chinese Science Bulletin, 2010, 55(15): 1495-1500. doi: 10.1007/s11434-010-3139-y [108] FISHER J M, REESE J G, PELLECHIA P J, et al. Role of Fe(Ⅲ), phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment [J]. Environmental Science & Technology, 2006, 40(7): 2200-2205. [109] 齐会勉, 吕亮, 乔显亮. 抗生素在土壤中的吸附行为研究进展 [J]. 土壤, 2009, 41(5): 703-708. QI H M, LV L, QIAO X L. Progress in sorption of antibiotics to soils [J]. Soils, 2009, 41(5): 703-708(in Chinese).
[110] WEI X X, CHEN J W, XIE Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin [J]. Environmental Science & Technology, 2013, 47(9): 4284-4290. [111] ZHANG Z C, XIE X D, YU Z Q, et al. Influence of chemical speciation on photochemical transformation of three fluoroquinolones (FQs) in water: Kinetics, mechanism, and toxicity of photolysis products [J]. Water Research, 2019, 148: 19-29. doi: 10.1016/j.watres.2018.10.027 [112] BONVIN F, OMLIN J, RUTLER R, et al. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation [J]. Environmental Science & Technology, 2013, 47(13): 6746-6755.