[1] |
SCHLÜSENER M P, BESTER K, SPITELLER M. Determination of antibiotics such as macrolides, ionophores and tiamulin in liquid manure by HPLC-MS/MS [J]. Analytical and Bioanalytical Chemistry, 2003, 375(7): 942-947. doi: 10.1007/s00216-003-1838-9
|
[2] |
SENTA I, KRIZMAN-MATASIC I, TERZIC S, et al. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography. A, 2017, 1509: 60-68. doi: 10.1016/j.chroma.2017.06.005
|
[3] |
LI W, XU X J, LYU B L, et al. Degradation of typical macrolide antibiotic roxithromycin by hydroxyl radical: Kinetics, products, and toxicity assessment [J]. Environmental Science and Pollution Research International, 2019, 26(14): 14570-14582. doi: 10.1007/s11356-019-04713-1
|
[4] |
葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为 [J]. 中国科学:化学, 2010, 40(2): 124-135. doi: 10.1360/zb2010-40-2-124
GE L K, ZHANG S Y, XIE Q, et al. Progress in studies on aqueous environmental photochemical behavior of antibiotics [J]. Scientia Sinica Chimica), 2010, 40(2): 124-135(in Chinese). doi: 10.1360/zb2010-40-2-124
|
[5] |
JIANG X S, ZHU Y Q, LIU L Q, et al. Occurrence and variations of pharmaceuticals and personal-care products in rural water bodies: A case study of the Taige Canal (2018-2019) [J]. Science of the Total Environment, 2021, 762: 143138. doi: 10.1016/j.scitotenv.2020.143138
|
[6] |
YANG L, WANG T Y, ZHOU Y Q, et al. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China [J]. Science of the Total Environment, 2021, 760: 144080. doi: 10.1016/j.scitotenv.2020.144080
|
[7] |
ZHAO B, XU J M, ZHANG G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2021, 262: 127741. doi: 10.1016/j.chemosphere.2020.127741
|
[8] |
DING Y, CUI K P, LV K, et al. Revealing the hydrological transport and attenuation of 14 antibiotics in a low-flow stream [J]. Science of the Total Environment, 2021, 761: 143288. doi: 10.1016/j.scitotenv.2020.143288
|
[9] |
JIA X, LIAN L S, YAN S W, et al. Comprehensive understanding of the phototransformation process of macrolide antibiotics in simulated natural waters [J]. ACS ES& T Water, 2021, 1(4): 938-948.
|
[10] |
SHAH S Q A, COLQUHOUN D J, NIKULI H L, et al. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania [J]. Environmental Science & Technology, 2012, 46(16): 8672-8679.
|
[11] |
SENTA I, KOSTANJEVECKI P, KRIZMAN-MATASIC I, et al. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: Possible importance of metabolites, synthesis byproducts, and transformation products [J]. Environmental Science & Technology, 2019, 53(13): 7463-7472.
|
[12] |
BOREEN A L, ARNOLD W A, MCNEILL K. Photodegradation of pharmaceuticals in the aquatic environment: A review [J]. Aquatic Sciences, 2003, 65(4): 320-341. doi: 10.1007/s00027-003-0672-7
|
[13] |
EDHLUND B L, ARNOLD W A, MCNEILL K. Aquatic photochemistry of nitrofuran antibiotics [J]. Environmental Science & Technology, 2006, 40(17): 5422-5427.
|
[14] |
KNAPP C W, CARDOZA L A, HAWES J N, et al. Fate and effects of enrofloxacin in aquatic systems under different light conditions [J]. Environmental Science & Technology, 2005, 39(23): 9140-9146.
|
[15] |
吕宝玲, 李威, 于筱莉, 等. 溶解性有机质对罗红霉素光降解的影响研究 [J]. 环境科学学报, 2019, 39(3): 747-754.
LÜ B L, LI W, YU X L, et al. Effect of dissolved organic matter on the photodegradation of roxithromycin [J]. Acta Scientiae Circumstantiae, 2019, 39(3): 747-754(in Chinese).
|
[16] |
LATCH D E, PACKER J L, STENDER B L, et al. Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products [J]. Environmental Toxicology and Chemistry, 2005, 24(3): 517-525. doi: 10.1897/04-243R.1
|
[17] |
JIAO S J, ZHENG S R, YIN D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J]. Chemosphere, 2008, 73(3): 377-382. doi: 10.1016/j.chemosphere.2008.05.042
|
[18] |
JUNG J, KIM Y, KIM J, et al. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna [J]. Ecotoxicology (London, England), 2008, 17(1): 37-45. doi: 10.1007/s10646-007-0174-9
|
[19] |
葛林科, 任红蕾, 鲁建江, 等. 我国环境中新兴污染物抗生素及其抗性基因的分布特征 [J]. 环境化学, 2015, 34(5): 875-883. doi: 10.7524/j.issn.0254-6108.2015.05.2014082501
GE L K, REN H L, LU J J, et al. Occurrence of antibiotics and corresponding resistance genes in the environment of China [J]. Environmental Chemistry, 2015, 34(5): 875-883(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2014082501
|
[20] |
LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627: 1195-1208. doi: 10.1016/j.scitotenv.2018.01.271
|
[21] |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
|
[22] |
LI Z, LI M, ZHANG Z Y, et al. Antibiotics in aquatic environments of China: A review and meta-analysis [J]. Ecotoxicology and Environmental Safety, 2020, 199: 110668. doi: 10.1016/j.ecoenv.2020.110668
|
[23] |
XU J, ZHANG Y, ZHOU C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China [J]. Science of the Total Environment, 2014, 497/498: 267-273. doi: 10.1016/j.scitotenv.2014.07.114
|
[24] |
WANG G G, ZHOU S H, HAN X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing City, southwest China [J]. Journal of Hazardous Materials, 2020, 389: 122110. doi: 10.1016/j.jhazmat.2020.122110
|
[25] |
LI J, CUI M, ZHANG H. Spatial and temporal variations of antibiotics in a tidal river [J]. Environmental Monitoring and Assessment, 2020, 192(6): 336. doi: 10.1007/s10661-020-08313-2
|
[26] |
ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in Lower Yangtze River, China [J]. Environmental Pollution, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365
|
[27] |
ZHANG Y X, CHEN H Y, JING L J, et al. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river [J]. Science of the Total Environment, 2020, 731: 139128. doi: 10.1016/j.scitotenv.2020.139128
|
[28] |
LI F F, CHEN L J, CHEN W D, et al. Antibiotics in coastal water and sediments of the East China Sea: Distribution, ecological risk assessment and indicators screening [J]. Marine Pollution Bulletin, 2020, 151: 110810. doi: 10.1016/j.marpolbul.2019.110810
|
[29] |
ZHANG R L, PEI J Y, ZHANG R J, et al. Occurrence and distribution of antibiotics in mariculture farms, estuaries and the coast of the Beibu Gulf, China: Bioconcentration and diet safety of seafood [J]. Ecotoxicology and Environmental Safety, 2018, 154: 27-35. doi: 10.1016/j.ecoenv.2018.02.006
|
[30] |
FONSECA E, HERNÁNDEZ F, IBÁÑEZ M, et al. Occurrence and ecological risks of pharmaceuticals in a Mediterranean River in Eastern Spain [J]. Environment International, 2020, 144: 106004. doi: 10.1016/j.envint.2020.106004
|
[31] |
NA T W, KANG T W, LEE K H, et al. Distribution and ecological risk of pharmaceuticals in surface water of the Yeongsan River, Republic of Korea [J]. Ecotoxicology and Environmental Safety, 2019, 181: 180-186. doi: 10.1016/j.ecoenv.2019.06.004
|
[32] |
MIOSSEC C, LANCELEUR L, MONPERRUS M. Multi-residue analysis of 44 pharmaceutical compounds in environmental water samples by solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry [J]. Journal of Separation Science, 2019, 42(10): 1853-1866. doi: 10.1002/jssc.201801214
|
[33] |
MOKH S, EL KHATIB M, KOUBAR M, et al. Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon [J]. Science of the Total Environment, 2017, 609: 830-841. doi: 10.1016/j.scitotenv.2017.07.230
|
[34] |
OSORIO V, LARRAÑAGA A, ACEÑA J, et al. Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers [J]. Science of the Total Environment, 2016, 540: 267-277. doi: 10.1016/j.scitotenv.2015.06.143
|
[35] |
PADHYE L P, YAO H, KUNG'U F T, et al. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant [J]. Water Research, 2014, 51: 266-276. doi: 10.1016/j.watres.2013.10.070
|
[36] |
AGUNBIADE F O, MOODLEY B. Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa [J]. Environmental Monitoring and Assessment, 2014, 186(11): 7273-7291. doi: 10.1007/s10661-014-3926-z
|
[37] |
PANDITI V R, BATCHU S R, GARDINALI P R. Online solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters [J]. Analytical and Bioanalytical Chemistry, 2013, 405(18): 5953-5964. doi: 10.1007/s00216-013-6863-8
|
[38] |
LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review [J]. Environmental Pollution, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003
|
[39] |
CHEN H, LIU S, XU X R, et al. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure [J]. Marine Pollution Bulletin, 2015, 90(1/2): 181-187.
|
[40] |
WANG W X, GU X H, ZHOU L J, et al. Antibiotics in crab ponds of lake Guchenghu Basin, China: Occurrence, temporal variations, and ecological risks [J]. International Journal of Environmental Research and Public Health, 2018, 15(3): 548. doi: 10.3390/ijerph15030548
|
[41] |
HUANG F Y, AN Z Y, MORAN M J, et al. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009−2019) [J]. Journal of Hazardous Materials, 2020, 399: 122813. doi: 10.1016/j.jhazmat.2020.122813
|
[42] |
刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展 [J]. 环境工程, 2020, 38(5): 36-42.
LIU P X, WANG X, FENG L. Occurrences, resources and risk of antibiotics in aquatic environment: A review [J]. Environmental Engineering, 2020, 38(5): 36-42(in Chinese).
|
[43] |
李辉, 陈瑀, 封梦娟, 等. 南京市饮用水源地抗生素污染特征及风险评估 [J]. 环境科学学报, 2020, 40(4): 1269-1277.
LI H, CHEN Y, FENG M J, et al. Pollution characteristics and risk assessment of antibiotics in Nanjing drinking water sources [J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1269-1277(in Chinese).
|
[44] |
廖杰, 魏晓琴, 肖燕琴, 等. 莲花水库水体中抗生素污染特征及生态风险评价 [J]. 环境科学, 2020, 41(9): 4081-4087.
LIAO J, WEI X Q, XIAO Y Q, et al. Pollution characteristics and risk assessment of antibiotics in Lianhua reservoir [J]. Environmental Science, 2020, 41(9): 4081-4087(in Chinese).
|
[45] |
陈永山, 章海波, 骆永明, 等. 苕溪流域典型断面底泥14种抗生素污染特征 [J]. 环境科学, 2011, 32(3): 667-672.
CHEN Y S, ZHANG H B, LUO Y M, et al. Investigation of 14 selected antibiotics in sediments of the typical cross sections of tiaoxi river [J]. Environmental Science, 2011, 32(3): 667-672(in Chinese).
|
[46] |
ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China [J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034
|
[47] |
YANG J F, YING G G, ZHAO J L, et al. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS [J]. Science of the Total Environment, 2010, 408(16): 3424-3432. doi: 10.1016/j.scitotenv.2010.03.049
|
[48] |
LYU J, YANG L S, ZHANG L, et al. Antibiotics in soil and water in China-a systematic review and source analysis [J]. Environmental Pollution, 2020, 266: 115147. doi: 10.1016/j.envpol.2020.115147
|
[49] |
PAN C Y, BAO Y Y, XU B T. Seasonal variation of antibiotics in surface water of Pudong New Area of Shanghai, China and the occurrence in typical wastewater sources [J]. Chemosphere, 2020, 239: 124816. doi: 10.1016/j.chemosphere.2019.124816
|
[50] |
YAO L L, WANG Y X, TONG L, et al. Seasonal variation of antibiotics concentration in the aquatic environment: A case study at Jianghan Plain, central China [J]. Science of the Total Environment, 2015, 527/528: 56-64. doi: 10.1016/j.scitotenv.2015.04.091
|
[51] |
刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价 [J]. 环境科学, 2019, 40(5): 2094-2100.
LIU X, WANG Z, WANG X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments [J]. Environmental Science, 2019, 40(5): 2094-2100(in Chinese).
|
[52] |
SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
|
[53] |
ZHANG R J, ZHANG R L, YU K F, et al. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth [J]. Environmental Pollution, 2018, 232: 450-457. doi: 10.1016/j.envpol.2017.09.064
|
[54] |
CHEN Y H, CUI K P, HUANG Q L, et al. Comprehensive insights into the occurrence, distribution, risk assessment and indicator screening of antibiotics in a large drinking reservoir system [J]. Science of the Total Environment, 2020, 716: 137060. doi: 10.1016/j.scitotenv.2020.137060
|
[55] |
王娅南, 黄合田, 彭洁, 等. 贵州草海喀斯特高原湿地水环境中典型抗生素的分布特征 [J]. 环境化学, 2020, 39(4): 975-986. doi: 10.7524/j.issn.0254-6108.2019090103
WANG Y N, HUANG H T, PENG J, et al. Occurrence and distribution of typical antibiotics in the aquatic environment of the wetland Karst plateau in Guizhou [J]. Environmental Chemistry, 2020, 39(4): 975-986(in Chinese). doi: 10.7524/j.issn.0254-6108.2019090103
|
[56] |
LIU S, WANG C, WANG P F, et al. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China [J]. Environmental Research, 2021, 198: 110449. doi: 10.1016/j.envres.2020.110449
|
[57] |
CHEN L L, LI H P, LIU Y, et al. Distribution, residue level, sources, and phase partition of antibiotics in surface sediments from the inland river: A case study of the Xiangjiang River, south-central China [J]. Environmental Science and Pollution Research International, 2020, 27(2): 2273-2286. doi: 10.1007/s11356-019-06833-0
|
[58] |
WANG Y Q, LIU Y, LU S Y, et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period [J]. Environmental Science and Pollution Research International, 2019, 26(28): 28796-28807. doi: 10.1007/s11356-019-06047-4
|
[59] |
WANG W X, ZHOU L J, GU X H, et al. Occurrence and distribution of antibiotics in surface water impacted by crab culturing: A case study of Lake Guchenghu, China [J]. Environmental Science and Pollution Research International, 2018, 25(23): 22619-22628. doi: 10.1007/s11356-018-2054-7
|
[60] |
杨俊, 王汉欣, 吴韵斐, 等. 苏州市水环境中典型抗生素污染特征及生态风险评估 [J]. 生态环境学报, 2019, 28(2): 359-368.
YANG J, WANG H X, WU Y F, et al. Occurrence, distribution and risk assessment of typical antibiotics in the aquatic environment of Suzhou City [J]. Ecology and Environmental Sciences, 2019, 28(2): 359-368(in Chinese).
|
[61] |
徐晖, 吴明红, 徐刚. 高效液相色谱-串联质谱法对水环境中12种抗生素的检测 [J]. 上海大学学报(自然科学版), 2017, 23(3): 483-490.
XU H, WU M H, XU G. Determination of 12 antibiotics in aqueous environment by high performance LC-MS/MS [J]. Journal of Shanghai University (Natural Science Edition), 2017, 23(3): 483-490(in Chinese).
|
[62] |
王大祥, 王倩倩. 淮河流域浉河区水环境中抗生素污染分布特征分析研究 [J]. 环境科学与管理, 2020, 45(3): 63-66.
WANG D X, WANG Q Q. Analysis on the distribution of antibiotics pollution in the water environment of Weihe River area in Huaihe River basin [J]. Environmental Science and Management, 2020, 45(3): 63-66(in Chinese).
|
[63] |
WANG J W, WEI H, ZHOU X D, et al. Occurrence and risk assessment of antibiotics in the Xi'an section of the Weihe River, northwestern China [J]. Marine Pollution Bulletin, 2019, 146: 794-800. doi: 10.1016/j.marpolbul.2019.07.016
|
[64] |
ZHANG G D, LIU X H, LU S Y, et al. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020, 242: 125269. doi: 10.1016/j.chemosphere.2019.125269
|
[65] |
LU S, LIN C Y, LEI K, et al. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in Eastern China [J]. Water Research, 2020, 184: 116187. doi: 10.1016/j.watres.2020.116187
|
[66] |
LEI K, ZHU Y, CHEN W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment [J]. Environment International, 2019, 130: 104919. doi: 10.1016/j.envint.2019.104919
|
[67] |
LI N, ZHANG X B, WU W, et al. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China [J]. Chemosphere, 2014, 111: 327-335. doi: 10.1016/j.chemosphere.2014.03.129
|
[68] |
ZHANG L W, DU S Y, ZHANG X, et al. Occurrence, distribution, and ecological risk of pharmaceuticals in a seasonally ice-sealed river: From ice formation to melting [J]. Journal of Hazardous Materials, 2020, 389: 122083. doi: 10.1016/j.jhazmat.2020.122083
|
[69] |
JIA J, GUAN Y J, CHENG M Q, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China [J]. Science of the Total Environment, 2018, 642: 1136-1144. doi: 10.1016/j.scitotenv.2018.06.149
|
[70] |
CHEN H Y, JING L J, TENG Y G, et al. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks [J]. Science of the Total Environment, 2018, 618: 409-418. doi: 10.1016/j.scitotenv.2017.11.054
|
[71] |
DONG D M, ZHANG L W, LIU S, et al. Antibiotics in water and sediments from Liao River in Jilin Province, China: Occurrence, distribution, and risk assessment [J]. Environmental Earth Sciences, 2016, 75(16): 1-10.
|
[72] |
GE L K, DONG Q Q, HALSALL C, et al. Aqueous multivariate phototransformation kinetics of dissociated tetracycline: Implications for the photochemical fate in surface waters [J]. Environmental Science and Pollution Research International, 2018, 25(16): 15726-15732. doi: 10.1007/s11356-018-1765-0
|
[73] |
GE L K, NA G S, ZHANG S Y, et al. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes [J]. Science of the Total Environment, 2015, 527/528: 12-17. doi: 10.1016/j.scitotenv.2015.04.099
|
[74] |
LI K, ZHANG P, GE L K, et al. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics [J]. Chemosphere, 2014, 111: 278-282. doi: 10.1016/j.chemosphere.2014.04.052
|
[75] |
黄宏, 李圆杏, 杨红伟. 水环境中抗生素的光降解研究进展 [J]. 环境化学, 2013, 32(7): 1335-1341. doi: 10.7524/j.issn.0254-6108.2013.07.029
HUANG H, LI Y X, YANG H W. Research progress on photodegradation of antibiotics in aqueous solution [J]. Environmental Chemistry, 2013, 32(7): 1335-1341(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.029
|
[76] |
WERNER J J, CHINTAPALLI M, LUNDEEN R A, et al. Environmental photochemistry of tylosin: Efficient, reversible photoisomerization to a less-active isomer, followed by photolysis [J]. Journal of Agricultural and Food Chemistry, 2007, 55(17): 7062-7068. doi: 10.1021/jf070101h
|
[77] |
TONG L, EICHHORN P, PÉREZ S, et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts [J]. Chemosphere, 2011, 83(3): 340-348. doi: 10.1016/j.chemosphere.2010.12.025
|
[78] |
VIONE D, FEITOSA-FELIZZOLA J, MINERO C, et al. Phototransformation of selected human-used macrolides in surface water: Kinetics, model predictions and degradation pathways [J]. Water Research, 2009, 43(7): 1959-1967. doi: 10.1016/j.watres.2009.01.027
|
[79] |
COGAN S, HAAS Y. Self-sensitized photo-oxidation of Para-indenylidene-dihydropyridine derivatives [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2008, 193(1): 25-32. doi: 10.1016/j.jphotochem.2007.06.003
|
[80] |
MARTIN N H, JEFFORD C W. Self-sensitized photo-oxygenation of 1-benzyl-3, 4-dihydroisoquinolines [J]. Helvetica Chimica Acta, 1981, 64(7): 2189-2192. doi: 10.1002/hlca.19810640725
|
[81] |
GE L K, CHEN J W, QIAO X L, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: Mechanism and kinetics [J]. Environmental Science & Technology, 2009, 43(9): 3101-3107.
|
[82] |
GE L K, CHEN J W, WEI X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents [J]. Environmental Science & Technology, 2010, 44(7): 2400-2405.
|
[83] |
葛林科. 水中溶解性物质对氯霉素类和氟喹诺酮类抗生素光降解的影响[D]. 大连: 大连理工大学, 2009.
GE L K. Effects of aqueous dissolved matter on photodegradation of phenicol and fluoroquinolone antibiotics[D]. Dalian: Dalian University of Technology, 2009(in Chinese).
|
[84] |
常海莎. 大环内酯类抗生素在水体中的光降解及毒性变化研究[D]. 石河子: 石河子大学, 2018.
CHANG H S. Study on the photodegradation and change of toxicity of macrolide antibiotics in aqueous environment[D]. Shihezi: Shihezi University, 2018(in Chinese).
|
[85] |
BATCHU S R, PANDITI V R, O'SHEA K E, et al. Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate [J]. Science of the Total Environment, 2014, 470/471: 299-310. doi: 10.1016/j.scitotenv.2013.09.057
|
[86] |
WANG H L, WANG M, WANG H, et al. Aqueous photochemical degradation of BDE-153 in solutions with natural dissolved organic matter [J]. Chemosphere, 2016, 155: 367-374. doi: 10.1016/j.chemosphere.2016.04.071
|
[87] |
QU S, KOLODZIEJ E P, CWIERTNY D M. Phototransformation rates and mechanisms for synthetic hormone growth promoters used in animal agriculture [J]. Environmental Science & Technology, 2012, 46(24): 13202-13211.
|
[88] |
VOIGT M, JAEGER M. On the photodegradation of azithromycin, erythromycin and tylosin and their transformation products - A kinetic study [J]. Sustainable Chemistry and Pharmacy, 2017, 5: 131-140. doi: 10.1016/j.scp.2016.12.001
|
[89] |
LATCH D E, STENDER B L, PACKER J L, et al. Photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine [J]. Environmental Science & Technology, 2003, 37(15): 3342-3350.
|
[90] |
LI W, LYU B L, LI J P, et al. Phototransformation of roxithromycin in the presence of dissolved organic matter: Characteriazation of the degradation products and toxicity evaluation [J]. Science of the Total Environment, 2020, 733: 139348. doi: 10.1016/j.scitotenv.2020.139348
|
[91] |
DODD M C, KOHLER H P, von GUNTEN U. Oxidation of antibacterial compounds by ozone and hydroxyl radical: Elimination of biological activity during aqueous ozonation processes [J]. Environmental Science & Technology, 2009, 43(7): 2498-2504.
|
[92] |
CHAMBERLAIN E, ADAMS C. Oxidation of sulfonamides, macrolides, and carbadox with free chlorine and monochloramine [J]. Water Research, 2006, 40(13): 2517-2526. doi: 10.1016/j.watres.2006.04.039
|
[93] |
VIONE D, MAURINO V, MINERO C, et al. Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution [J]. Environmental Science & Technology, 2005, 39(13): 5066-5075.
|
[94] |
MILL T. Predicting photoreaction rates in surface waters [J]. Chemosphere, 1999, 38(6): 1379-1390. doi: 10.1016/S0045-6535(98)00540-2
|
[95] |
LUO X, WEI X X, CHEN J W, et al. Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies [J]. Water Research, 2019, 166: 115083. doi: 10.1016/j.watres.2019.115083
|
[96] |
GE L K, ZHANG P, HALSALL C, et al. The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics: Kinetics, pathways, and comparisons with direct photolysis [J]. Water Research, 2019, 149: 243-250. doi: 10.1016/j.watres.2018.11.009
|
[97] |
VOIGT M, SAVELSBERG C, JAEGER M. Photodegradation of the antibiotic spiramycin studied by high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry [J]. Toxicological & Environmental Chemistry, 2017, 99(4): 624-640.
|
[98] |
LITTER M I, QUICI N. Photochemical advanced oxidation processes for water and wastewater treatment [J]. Recent Patents on Engineering, 2010, 4(3): 217-241. doi: 10.2174/187221210794578574
|
[99] |
WANG J L, SONG M R, CHEN B Y, et al. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: Implications to nitrogen removal and analysis [J]. Chemosphere, 2017, 184: 1003-1011. doi: 10.1016/j.chemosphere.2017.06.078
|
[100] |
BENSALAH N, KHODARY A, ABDEL-WAHAB A. Kinetic and mechanistic investigations of mesotrione degradation in aqueous medium by Fenton process [J]. Journal of Hazardous Materials, 2011, 189(1/2): 479-485.
|
[101] |
GOZLAN I, KOREN I. Identification, mechanisms and kinetics of macrolide degradation product formation under controlled environmental conditions [J]. Journal of Environmental Analytical Chemistry, 2016, 3(1): 100171.
|
[102] |
张倩, 杨琛, 莫德清, 等. 水溶液性质对泰乐菌素光降解的影响 [J]. 农业环境科学学报, 2014, 33(12): 2444-2449.
ZHANG Q, YANG C, MO D Q, et al. Effects of aqueous solution properties on tylosin photolysis [J]. Journal of Agro-Environment Science, 2014, 33(12): 2444-2449(in Chinese).
|
[103] |
常海莎, 闫豫君, 鲁建江, 等. 螺旋霉素在水溶液中的光降解 [J]. 环境化学, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703
CHANG H S, YAN Y J, LU J J, et al. Photodegradation of spiramycin in aqueous solution [J]. Environmental Chemistry, 2018, 37(6): 1343-1350(in Chinese). doi: 10.7524/j.issn.0254-6108.2017091703
|
[104] |
TERCERO ESPINOZA L A, NEAMŢU M, FRIMMEL F H. The effect of nitrate, Fe(Ⅲ) and bicarbonate on the degradation of bisphenol A by simulated solar UV-irradiation [J]. Water Research, 2007, 41(19): 4479-4487. doi: 10.1016/j.watres.2007.06.060
|
[105] |
NEAMŢU M, POPA D M, FRIMMEL F H. Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol [J]. Journal of Hazardous Materials, 2009, 164(2/3): 1561-1567.
|
[106] |
HALLADJA S, AMINE-KHODJA A, TER HALLE A, et al. Photolysis of fluometuron in the presence of natural water constituents [J]. Chemosphere, 2007, 69(10): 1647-1654. doi: 10.1016/j.chemosphere.2007.05.035
|
[107] |
GE L K, CHEN J W, ZHANG S Y, et al. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions [J]. Chinese Science Bulletin, 2010, 55(15): 1495-1500. doi: 10.1007/s11434-010-3139-y
|
[108] |
FISHER J M, REESE J G, PELLECHIA P J, et al. Role of Fe(Ⅲ), phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment [J]. Environmental Science & Technology, 2006, 40(7): 2200-2205.
|
[109] |
齐会勉, 吕亮, 乔显亮. 抗生素在土壤中的吸附行为研究进展 [J]. 土壤, 2009, 41(5): 703-708.
QI H M, LV L, QIAO X L. Progress in sorption of antibiotics to soils [J]. Soils, 2009, 41(5): 703-708(in Chinese).
|
[110] |
WEI X X, CHEN J W, XIE Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin [J]. Environmental Science & Technology, 2013, 47(9): 4284-4290.
|
[111] |
ZHANG Z C, XIE X D, YU Z Q, et al. Influence of chemical speciation on photochemical transformation of three fluoroquinolones (FQs) in water: Kinetics, mechanism, and toxicity of photolysis products [J]. Water Research, 2019, 148: 19-29. doi: 10.1016/j.watres.2018.10.027
|
[112] |
BONVIN F, OMLIN J, RUTLER R, et al. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation [J]. Environmental Science & Technology, 2013, 47(13): 6746-6755.
|