有机胺调控的CO2吸附材料的研究进展

杨泛明, 李习达, 易志成, 贺国文, 符健斌, 祝小艳, 王超林. 有机胺调控的CO2吸附材料的研究进展[J]. 环境化学, 2020, (3): 809-820. doi: 10.7524/j.issn.0254-6108.2019101701
引用本文: 杨泛明, 李习达, 易志成, 贺国文, 符健斌, 祝小艳, 王超林. 有机胺调控的CO2吸附材料的研究进展[J]. 环境化学, 2020, (3): 809-820. doi: 10.7524/j.issn.0254-6108.2019101701
YANG Fanming, LI Xida, YI Zhicheng, HE Guowen, FU Jianbin, ZHU Xiaoyan, WANG Chaolin. Organic amine-regulated materials for CO2 adsorption[J]. Environmental Chemistry, 2020, (3): 809-820. doi: 10.7524/j.issn.0254-6108.2019101701
Citation: YANG Fanming, LI Xida, YI Zhicheng, HE Guowen, FU Jianbin, ZHU Xiaoyan, WANG Chaolin. Organic amine-regulated materials for CO2 adsorption[J]. Environmental Chemistry, 2020, (3): 809-820. doi: 10.7524/j.issn.0254-6108.2019101701

有机胺调控的CO2吸附材料的研究进展

    通讯作者: 杨泛明, E-mail: ychufei@163.com
  • 基金项目:

    湖南省自然科学基金(2019JJ50026),湖南省教育厅科学研究项目(18B447),湖南省教育厅科学研究重点项目(19A085)和湖南省自然科学基金(2017JJ2018)资助.

Organic amine-regulated materials for CO2 adsorption

    Corresponding author: YANG Fanming, ychufei@163.com
  • Fund Project: Supported by the Natural Science Foundation of Hunan Province (2019JJ50026), the Scientific Research Projects of Hunan Education Department (18B447), the Key Scientific Research Projects of Hunan Education Department (19A085) and the Natural Science Foundation of Hunan Province (2017JJ2018).
  • 摘要: 当前,CO2排放量急剧增加,空气中CO2浓度正逐年增大.利用固体材料进行CO2吸附可以实现CO2减排的目的.CO2吸附剂中,有机胺调控的固体材料因具有吸附量较大、对设备腐蚀性较小等特点而备受关注.然而,目前所报道的大部分有机胺调控的固体材料中N原子利用率较低,吸附速率较慢.在CO2吸附体系中引入水分,使其参与CO2捕集,有利于提高CO2与氨基的反应摩尔比,增大N原子利用率,提高CO2吸附性能.将含羟基的聚合物引入至有机胺调控的CO2吸附材料之中,也可以获得相似的效果.本文综述了近年来有机胺调控的CO2吸附材料的设计及"构-效"关系,具体包括有机胺调控的氧化物、多孔碳材料、硅基分子筛和金属-有机框架材料的合成及CO2吸附机理.同时,展望了有机胺调控的CO2吸附材料面临的科学挑战及发展机遇.
  • 加载中
  • [1] LAN J W, LIU M S, LU X Y, et al. Novel 3D nitrogen-rich metal organic framework for highly efficient CO2 adsorption and catalytic conversion to cyclic carbonates under ambient temperature[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7):8727-8735.
    [2] LAN D H, CHEN L, AU C T, et al. One-pot synthesized multi-functional grapheme oxide as a water-tolerant and efficient metal-free heterogeneous catalyst for cycloaddition reaction[J]. Carbon, 2015,93:22-31.
    [3] LAN D H, GONG Y X, TAN N Y, et al. Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions[J]. Carbon, 2018, 127:245-254.
    [4] VENNA S R, CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2010, 132(1):76-78.
    [5] 夏芝香, 项群扬, 周旭萍, 等. 氨水混合吸收剂脱除CO2实验研究[J]. 环境科学, 2014, 35(7):2508-2514.

    XIA Z X, XIANG Q Y, ZHOU X P, et al. Experimental study on CO2 absorption by aqueous ammonia-based blended absorbent[J]. Environmental Science, 2014, 35(7):2508-2514(in Chinese).

    [6]
    [7] 陈杰, 郭清, 花亦怀, 等. MDEA+MEA/DEA混合胺液脱碳性能实验研究[J]. 天然气工业, 2014, 34(5):137-143.

    CHEN J, GUO Q, HUA Y H, et al. An experimental study of absorption and desorption of blended amine solutions MDEA + MEA/DEA for natural gas decarburization[J]. Natural Gas Industry, 2014, 34(5):137-143(in Chinese).

    [8] 刘维伟, 胡松, 陈文, 等. 功能型离子液体的合成表征及CO2吸收性能[J]. 化工学报, 2012, 63(1):139-145.

    LIU W W, HU S, CHEN W, et al. Synthesis and identification of functional ionic liquids and research on its performance of CO2 absorption[J]. Journal of Chemical Industry and Engineering, 2012, 63(1):139-145(in Chinese).

    [9] BEN-MANSOUR, R, HABIB M A, BAMIDELE O E, et al. Carbon capture by physical adsorption:Materials, experimental investigations and numerical modeling and simulations-A review[J]. Applied. Energy, 2016, 161:225-255.
    [10] CHEN S, YANG F M, CHEN L. Synthesis of triethylenetetramine functionalized mesoporous ZrO2 adsorbents for CO2 capture[J]. Journal of Natural Science of Hunan Normal University, 2017, 40(1):51-59.
    [11] PSARRAS P, HE J, WILCOX J. Effect of water on the CO2 adsorption capacity of amine-functionalized carbon sorbents[J]. Industrial & Engineering Chemistry Research, 2017, 56(21):6317-6325.
    [12] GHOLIDOUST A, ATKINSON J D, HASHISHO Z. Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke[J]. Energy and Fuels, 2017, 31:1756-1763.
    [13] KISHOR R, GHOSHAL A K. Amine-modified mesoporous silica for CO2 adsorption:The role of structural parameters[J]. Industrial & Engineering Chemistry Research, 2017, 56(20):6078-6087.
    [14] SANZ-PEREZ E S, DANTAS T C M. Reuse and recycling of amine-functionalized silica materials for CO2 adsorption[J]. Chemical Engineering Jouranl, 2017, 308(15):1021-1033.
    [15] 李艳南, 程军, 刘建忠, 等. 分子筛SBA-15负载离子液体[P66614] [Triz] 脱除氢烷气中CO2[J]. 化工学报, 2018, 69(1):2526-532.

    LI Y N, CHENG J, LIU J Z, et al. CO2 removal from biohythane by absorption in ionic liquid[P66614] [Triz] loaded on molecular sieve SBA-15[J]. Journal of Chemical Industry and Engineering, 2018, 69(1):2526-532(in Chinese).

    [16] 葛慧, 苗媛媛, 赵云霞, 等. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1):32-40.

    GE H, MIAO Y Y, ZHAO Y X, et al. Research progress of modified metal-organic frameworks for CO2 capture[J]. Environmental Chemistry, 2018, 37(1):32-40(in Chinese).

    [17] DARUNTE L A, OETOMO A D, WALTON K S, et al. Direct air capture of CO2 using amine functionalized MIL-101(Cr)[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10):5761-5768.
    [18] LI H, WANG K, FENG D, et al. Incorporation of alkylamine into metal-organic rrameworks through a brønsted acid-base reaction for CO2 capture[J]. ChemSusChem, 2016, 9(19):2832-2840.
    [19] ZHU J, USOV P M, XU W, et al. A new class of metal-cyclam-based zirconium metal-organic frameworks for CO2 adsorption and chemical fixation[J]. Journal of the American Chemical Society, 2018, 140(3):993-1003.
    [20] COGSWELLA C F, XIEA Z, WOLEKA A. Pore structure-CO2 adsorption property-relations of supported amine materials with multi-pore networks[J]. Journal of Materials Chemistry A, 2017, 5:8526-8536.
    [21] LIU F, CHEN S, GAO Y. Synthesis of porous polymer based solid amine adsorbent:Effect of pore size and amine loading on CO2 adsorption[J]. Journal of Colloid and Interface Science, 2017, 506:236-244.
    [22] XU X C, SONG C S, ANDRESEN J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy and Fuels, 2002, 16:1463-1469.
    [23] YOUNAS M, SOHAIL M, LEONG K, et al. Feasibility of CO2 adsorption by solid adsorbents:A review on low-temperature systems[J]. International Journal of Environmental Science, 2016, 13(7):1839-1860.
    [24] CHANG A C C, CHUANG S S C, GRAY M. et al. In-Situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(Aminopropyl)triethoxysilane[J]. Energy and Fuels, 2003, 17:468-473.
    [25] LI K, KRESS J D, MEBANE D S. The mechanism of CO2 adsorption under dry and humid conditions in mesoporous silica-supported amine sorbents[J]. Journal of Physical Chemistry C, 2016, 120:23683-23691.
    [26] PLANAS N, DZUBAK A L, POLONI R, et al. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework[J]. Journal of the American Chemical Society, 2013, 135(20):7402-7405.
    [27] MONAZAM E R, SHADLE L J, MILLER D C, et al. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica[J]. AIChE Journal, 2013, 59(3):923-935.
    [28] YANG F M, LIU Y, CHEN L, et al. Synthesis of amine-modified solid Fe-Zr adsorbents for CO2 adsorption[J]. Journal of Chemical Technology & Biotechnology, 2016, 91:2340-2348.
    [29] ZHOU L, FAN J, CUI G, et al. Highly efficient and reversible CO2 adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels[J]. Green Chemitry, 2014, 16:4009-4016.
    [30] GOEL C, BHUNIA H, BAJPAI P K. Resorcinol-formaldehyde based nanostructured carbons for CO2 adsorption:Kinetics, isotherm and thermodynamic studies[J]. RSC Advances, 2015, 5:93563-93578.
    [31] SMITH D G A, PATKOWSKI K. Benchmarking the CO2 adsorption energy on carbon nanotubes[J]. The Journal of Physical Chemistry C, 2015, 119(9):4934-4948.
    [32] COSTA J S, GAMEZ P, BLACK C A, et al. Chemical modification of a bridging ligand inside a metal-organic framework while maintaining the 3D structure[J]. European Journal of Inorganic Chemistry, 2008, 2008(10):1551-1554.
    [33] DRAGE T C, BLACKMAN J M, PEVIDA C, et al. Evaluation of activated carbon adsorbents for CO2 capture in gasification[J]. Energy and Fuels, 2009, 23:2790-2796.
    [34] SIRIWARDANE R V, SHEN M S, FISHER E P, et al. Adsorption of CO2 on molecular sieves and activated carbon[J]. Energy and Fuels, 2001, 15:279-284.
    [35] OHS B, KRODEL M, WESSLING M, et al. Adsorption of carbon dioxide on solid amine-functionalized sorbents:A dual kinetic model[J]. Separation and Purification Technology, 2018, 204:13-20.
    [36] LIU Q, SHI J, ZHENG S, et al. Kinetics studies of CO2 adsorption/desorption on amine-functionalized multiwalled carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2014, 53:11677-11683.
    [37] ULLAH R, ATILHAN M, APARICIO S, et al. Insights of CO2 adsorption performance of amine impregnated mesoporous silica (SBA-15) at wide range pressure and temperature conditions[J]. International Journal of Greenhouse Gas Control, 2015, 43:22-32.
    [38] LIU Y M, Yu X J. Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized KIT-6[J]. Applied Energy, 2018, 211:51080-1088.
    [39] HOUSHMAND A, WAN DAUD W M A, LEE M G, et al. Carbon dioxide capture with amine-grafted activated carbon[J]. Water, Air, & Soil Pollution, 2012, 223:827-835.
    [40] RODRIGUEZ-MOSQUEDA R, PFEIFFER H. Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes[J]. The Journal of Physical Chemistry A, 2010, 114:4535-4541.
    [41] ZHAO Y, SHEN Y, BAI L, et al. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling[J]. Applied Surface Science, 2012, 261:708-716.
    [42] YANG F M, CHEN L, AU C T, et al. Preparation of triethylenetetramine-modified zirconosilicate molecular sieve for carbon dioxide adsorption[J]. Environmental Progress & Sustainable Energy, 2015, 34:1814-1821.
    [43] YIN W J, KRACK M, WEN B, et al. CO2 capture and conversion on rutile TiO2(110) in the water environment:Insight by first-principles calculations[J]. Journal of Physical Chemistry Letters, 2015, 6:2538-2545.
    [44] CAO Y, HU S, YU M, et al. Adsorption and interaction of CO2 on rutile TiO2(110) surfaces:A combined UHV-FTIRS and theoretical simulation study[J]. Physical Chemistry Chemical Physics, 2015, 17:23994-24600.
    [45] 陈林, 丁玉栋, 朱恂, 等. 高比表面积MgO颗粒制备及其CO2吸附性能研究[J]. 工程物理学报, 2016,37(6):1243-1248.

    CHEN L, DING Y D, ZHU X, et al. Synthesis of MgO pellets with high specific surface area and its CO2 adsorption property[J]. Journal of Engineering Thermophysics, 2016, 37(6):1243-1248(in Chinese).

    [46] SOLIS B H, CUI Y, WENG X, et al. Initial stages of CO2 adsorption on CaO:A combined experimental and computational study[J]. Physical Chemistry Chemical Physics, 2017, 19:4231-4242.
    [47] GUO H, FENG J, ZHAO Y, et al. Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO2 adsorption[J]. Journal of CO2 Utilization, 2017, 19:165-176.
    [48] KÖCK E M, KOGLER M, BIELZ T, et al. In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2[J]. Journal of Physical Chemistry C, 2013, 117(34):17666-17673.
    [49] LIU C X, ZHANG L, DENG J G, et al. Surfactant-aided hydrothermal synthesis and carbon dioxide adsorption behavior of three-dimensionally mesoporous calcium oxide single-crystallites with tri-, tetra-, and hexagonal morphologies[J]. Industrial & Engineering Chemistry Research, 2008, 112:19248-19256.
    [50] ZHAO X L, HU X, HU G S, et al. Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine[J]. Journal of Materials Chemistry A, 2013, 1:6208-6215.
    [51] SONG F, ZHAO Y, DING H, et al. Capture of carbon dioxide by amine-loaded as-synthesized TiO2 nanotubes[J]. Environmental Technology, 2013, 34(11):1405-1410.
    [52] LIAO Y, CAO S W, YUAN Y P, et al. Efficient CO2 capture and photoreduction by amine-functionalized TiO2[J]. European Journal of Chemistry, 2014, 20:10220-10222.
    [53] 闫婷婷, 邢国龙, 贲腾. 一步碳化多孔有机材料制备多孔碳及其性能的研究[J]. 化学学报, 2018, 76(5):366-376.

    YAN T T, XING G L, BEN T. One-step strategy to synthesize porous carbons by carbonized porous organic materials and their applications[J]. Acta Chimica Sinica, 2018, 76:366-376(in Chinese).

    [54] KONGNOO A, INTHARAPAT P, WORATHANAKUL P, et al. Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):73-81.
    [55]
    [56] KHALILI S, KHOSHANDAM B, JAHANSHAHI M. Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO2 adsorption[J]. RSC Advances, 2016, 6:35692-35704.
    [57] LIU L, NICHOISON D, BHATIA S K. Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons:A molecular simulation study[J]. Chemical Engineering Science, 2015, 121:268-278.
    [58] OH J, MO Y H, LE V D, et al. Borane-modified graphene-based materials as CO2 adsorbents[J]. Carbon, 2014, 79:450-456.
    [59] ALHWAIGE A, AGAG T, ISHIDA H, et al. Biobased chitosan hybrid aerogels with superior adsorption:role of graphene oxide in CO2 capture[J]. RSC Advances, 2013, 3:16011-16020.
    [60] LI W, JIANG X, YANG H, et al. Solvothermal synthesis and enhanced CO2 adsorption ability of mesoporous graphene oxide-ZnO nanocomposite[J]. Applied Surface Science, 2015, 356:812-816.
    [61] PLAZA M G, PEVIDA C, ARENILLAS A, et al. CO2 capture by adsorption with nitrogen enriched carbons[J]. Fuel, 2007, 86:2204-2212.
    [62] BEZERRA D P, OLIVEIRA R S, VIEIRA R S, et al. Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X[J]. Adsorption, 2011, 17:235-246.
    [63] BOONPOKE A, CHIARAKORN S, LAOSIRIPOJANA N, et al. Investigation of CO2 adsorption by bagasse-based activated carbon[J]. Korean Journal of Chemical Engineering, 2012, 29(1):89-94.
    [64] SU F, LU C, CHUNG A J, et al. CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption[J]. Applied Energy, 2014, 113:706-712.
    [65] IRURETAGOYENA D, SHAFFER M S P, CHADWICK D. Layered double oxides supported on graphene oxide for CO2 adsorption:effect of support and residual sodium[J]. Industrial & Engineering Chemistry Research, 2015, 54:6781-6792.
    [66] HONG S M, LEE K B. Solvent-assisted amine modification of graphite oxide for CO2 adsorption[J]. RSC Advances, 2014, 4:56707-56712.
    [67] SHIN G J, RHEE K Y, PARK S J. Improvement of CO2 capture by graphite oxide in presence of polyethylenimine[J]. International Journal of Hydrogen Energy, 2016, 41(32):14351-14359.
    [68] SUI Z Y, CUI Y, ZHU J H, et al. Preparation of three-dimensional graphene oxide-Polyethylenimine porous materials as dye and gas adsorbents[J]. ACS Applied Materials & Interfaces, 2013, 5:9172-9179.
    [69] CHAE I S, LEE J H, HONG J, et al. The platform effect of graphene oxide on CO2 transport on copper nanocomposites in ionic liquids[J]. Chemical Engineering Journal, 2014, 251:343-347.
    [70] XU J, XU M, WU J, et al. Graphene oxide immobilized with ionic liquids:facile preparation and efficient catalysis for solvent-free cycloaddition of CO2 to propylene carbonate[J]. RSC Advances, 2015, 5:72361-72368.
    [71] PALANISAMY T, RAMAPRABHU S. Amine-rich ionic liquid grafted graphene for sub-ambient carbon dioxide adsorption[J]. RSC Advances, 2016, 6:3032-3040.
    [72] JOOS L, SWISHER J A, SMIT B. Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X[J]. Langmuir, 2013, 29(51):15936-15942.
    [73] 孔祥明, 杨颖, 沈文龙, 等. CO2/CH4/N2在沸石13X-APG上的吸附平衡[J]. 化工学报, 2013, 64(6):2117-2124.

    KONG X M, YANG Y, SHEN W L, et al. Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG[J]. Journal of Chemical Industry and Engineering (China), 2013, 64(6):2117-2124(in Chinese).

    [74] 刘学武, 李文秀, 郑国锋, 等. 13X沸石分子筛低温变压吸附CO2/CH4实验研究[J]. 天然气化工(C1

    化学与化工), 2017, 42:5-8. LIU X W, LI W X, ZHENG G F, et al. Low-temperature pressure swing adsorption of CO2/CH4 on zeolite 13X[J]. Natural Gas Chemical Industry, 2017, 42:5-8(in Chinese).

    [75] WU H Y, BAI H, WU J C S. Photocatalytic reduction of CO2 using Ti-MCM-41 photocatalysts in monoethanolamine solution for methane production[J]. Industrial & Engineering Chemistry Research, 2014, 53:11221-11227.
    [76] LAN B, HUANG R, LI L, et al. Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41 as catalyst[J]. Chemical Engineering Journal, 2013, 219:346-354.
    [77] SIRIWARDANE R V, SHEN M S, FISHER E P. Adsorption of CO2, N2, and O2 on natural zeolites[J]. Energy and Fuels, 2003, 17:571-576.
    [78] OLEA A, SANZ-PEREZ E S, ARENCIBIA A, et al. Amino-functionalized pore-expanded SBA-15 for CO2 adsorption[J]. Adsorption, 2013, 19:589-600.
    [79] LIU F, HUANG K, YOO C J, et al. Facilely synthesized meso-macroporous polymer as support of poly(ethyleneimine) for highly efficient and selective capture of CO2[J]. Chemical Engineering Journal, 2017, 314:466-476.
    [80] LE Y, GUO D, CHENG B, et al. Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability[J]. Journal of Colloid and Interface Science, 2013, 408:173-180.
    [81] ZHANG W, LIU H, Sun C, et al. Performance of polyethyleneimine-silica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 251:293-303.
    [82] CHENG J, LI Y N, HU L Q, et al. CO2 absorption and diffusion in ionic liquid[P66614] [Triz] modified molecular sieves SBA-15 with various pore lengths[J]. Fuel Processing Technology, 2018, 172:216-224.
    [83] CHENG J, LI Y, HU L, et al. CO2 adsorption performance of ionic liquid[P66614] [2-Op] loaded onto molecular sieve MCM-41 compared to pure ionic liquid in biohythane/pure CO2 atmospheres[J]. Energy and Fuels, 2016, 30:3251-3256.
    [84] CALLEJA G, SANZ R, ARENCIBIA A, et al. Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2[J]. Topics in Catalysis, 2011, 54:135-145.
    [85] KISHOR R, GHOSHAL A K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption[J]. Chemical Engineering Journal, 2015, 262:882-890.
    [86] VILARRASA-GARCIA E, CECILA J A, SANTOS S M L, et al. CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas[J]. Microporous and Mesoporous Materials, 2014, 187:125-134.
    [87] MINJU N, NAIR B N, PEER MOHAMED A, et al. Surface engineered silica mesospheres-a promising adsorbent for CO2 capture[J]. Separation and Purification Technology, 2017, 181:192-200.
    [88] KUWAHARA Y, KANG D Y, COPELAND J R, et al. Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports[J]. Journal of the American Chemical Society, 2012, 134:10757-10760.
    [89] YANG F M, LIU Y, CHEN L, et al. Triethylenetetramine-modified P123-occluded Zr-SBA-15 molecular sieve for CO2 adsorption[J]. Australian Journal of Chemistry, 2015, 68:1427-1433.
    [90] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10):1350-1361.

    LI J W, REN Y W, JIANG H F. Application of metal-organic framework materials in the chemical fixation of carbon dioxide[J]. Progress in Chemistry, 2019, 31(10):1350-1361(in Chinese).

    [91] REN J, DYOSIBA X, MUSYOKA N, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs)[J]. Coordination Chemistry Reviews, 2017, 352:187-219.
    [92] MCDONALD T M, RAM LEE W, MASON J A, et al. Capture of carbon cioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)[J]. Journal of the American Chemical Society, 2012, 134:7056-7065.
    [93] KONDO A, KONJIMA N, KAJIRO H, et al. Gas adsorption mechanism and kinetics of an elastic layer-structured metal-organic framework[J]. Journal of Physical Chemistry C, 2012, 116:4157-4162.
    [94] EISENBERG D, STROEK W, GEELS N J, et al. A rational synthesis of hierarchically porous, N-doped carbon from Mg-based MOFs:Understanding the link between nitrogen content and oxygen reduction electrocatalysis[J]. Physical Chemistry Chemical Physics, 2016, 18:20778-20783.
    [95] CATTANEO D, WARRENDER S J, DUNCAN M J, et al. Tuning the nitric oxide release from CPO-27 MOFs[J]. RSC Advances, 2016, 6:14059-14067.
    [96] KRGER M, INGE A K, REINSCH H, et al. Polymorphous Al-MOFs based on V-shaped linker molecules:Synthesis, properties, and in situ investigation of their crystallization[J]. Inorganic Chemistry, 2017, 56(10):5851-5862.
    [97] TEO H W B, CHAKRABORRY A, KAYAL S. Evaluation of CH4 and CO2 adsorption on HKUST-1 and MIL-101(Cr) MOFs employing monte carlo simulation and comparison with experimental data[J]. Applied Thermal Engineering, 2017, 110:891-900.
    [98] ZHU N, ZOU Y, HUANG M, et al. A sensitive, colorimetric immunosensor based on Cu-MOFs and HRP for detection of dibutyl phthalate in environmental and food samples[J]. Talanta, 2018, 186:104-109.
    [99] KIM H C, HUH S, KIM J Y, et al. Zn-MOFs containing flexible α,ω-alkane (or alkene)-dicarboxylates with 1,2-bis(4-pyridyl)ethylene:comparison with Zn-MOFs containing 1,2-bis(4-pyridyl)ethane ligands[J]. CrystEngComm, 2017, 19:99-109.
    [100] YUAN S, QIN J S, ZOU L, et al. Thermodynamically guided synthesis of mixed-linker Zr-MOFs with enhanced tenability[J]. Journal of the American Chemical Society, 2016, 138(20):6636-6642.
    [101] SABOUNI R, KAZEMIAN H, ROHANI S. Carbon dioxide capturing technologies:A review focusing on metal organic framework materials (MOFs)[J]. Environmental Science and Pollution Research, 2014, 21:5427-5449.
    [102] CUI R H, XU Y H, JIANG Z. Syntheses, structures, and photoluminescence of two Cd(Ⅱ) coordination polymers constructed from analogue (pyridyl)imidazole derivative and polycarboxylate acid[J]. Inorganic Chemistry Communications, 2009, 12:933-936.
    [103] AN J, FIORELLA R P, GEIB S J, et al. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle[J]. Journal of the American Chemical Society, 2009, 131:8401-8403.
    [104] AN J, GEIB S J, ROSI N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine and mino-decorated pores[J]. Journal of the American Chemical Society, 2010, 132:38-39.
    [105] DARUNTE L A, TERADA Y, MURDOCK C R, et al. Monolith-supported amine-functionalized Mg2(dobpdc) adsorbents for CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(20):17042-17050.
    [106] POKHREL J, BHORIA N, ANASTASIOU S, et al. CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions[J]. Microporous and Mesoporous Materials, 2018, 267:53-67.
    [107] ABID H R, RADA Z H, DUAN X, et al. Enhanced CO2 adsorption and selectivity of CO2/N2 on amino-MIL-53(Al) synthesized by polar Co-solvents[J]. Energy and Fuels, 2018, 32(4):4502-4510.
    [108] LIN Y, KONG C, CHEN L. Amine-functionalized metal-organic frameworks:Structure, synthesis and applications[J]. RSC Advances, 2016, 6:32598-32614.
    [109] ZHAO Y, SEREDYCH M, JAGIELLO J, et al. Insight into the mechanism of CO2 adsorption on Cu-BTC and its composites with graphite oxide or aminated graphite oxide[J]. Chemical Engineering Journal, 2014, 239:399-407.
    [110] ZHAO Y, SEREDYCH M, ZHONG Q, et al. Aminated graphite oxides and their composites with copper-based metal-organic framework:In search for efficient media for CO2 sequestration[J]. RSC Advances, 2013, 3:9932-9941.
    [111] ZHAO Y, SEREDYCH M, ZHONG Q, et al. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature[J]. ACS Applied Materials & Interfaces, 2013, 5(11):4951-4959.
    [112] ZHANG Z, MA X, WANG D, et al. Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas[J]. AIChE Journal, 2012, 58(8):2495-2502.
    [113] BELMABKHOUT Y, SAYARI A. Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO2 capture from flue gas[J]. Energy and Fuels, 2010, 24:5273-5280.
    [114] BOURRELLY S, LIEWELLYN P L, SERRE C, et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47[J]. Journal of the American Chemical Society, 2005, 127(39):13519-13521.
    [115] SAKWA-NOVAK M, TAN S, JONES C W. Role of additives in composite PEI/oxide CO2 adsorbents:Enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air[J]. ACS Applied Materials & Interfaces, 2015, 7:24748-24759.
    [116] YUE M B, CHUN Y, CAO Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template[J]. Advanced Functional Material, 2006, 16:1717-1722.
    [117] DING S Y, WANG W. Covalent organic frameworks (COFs):From design to applications[J]. Chemical Society Reviews, 2013, 42:548-568.
    [118] COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310:1166-1170.
  • 加载中
计量
  • 文章访问数:  1841
  • HTML全文浏览数:  1841
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-17

有机胺调控的CO2吸附材料的研究进展

    通讯作者: 杨泛明, E-mail: ychufei@163.com
  • 湖南城市学院材料与化学工程学院, 益阳, 413000
基金项目:

湖南省自然科学基金(2019JJ50026),湖南省教育厅科学研究项目(18B447),湖南省教育厅科学研究重点项目(19A085)和湖南省自然科学基金(2017JJ2018)资助.

摘要: 当前,CO2排放量急剧增加,空气中CO2浓度正逐年增大.利用固体材料进行CO2吸附可以实现CO2减排的目的.CO2吸附剂中,有机胺调控的固体材料因具有吸附量较大、对设备腐蚀性较小等特点而备受关注.然而,目前所报道的大部分有机胺调控的固体材料中N原子利用率较低,吸附速率较慢.在CO2吸附体系中引入水分,使其参与CO2捕集,有利于提高CO2与氨基的反应摩尔比,增大N原子利用率,提高CO2吸附性能.将含羟基的聚合物引入至有机胺调控的CO2吸附材料之中,也可以获得相似的效果.本文综述了近年来有机胺调控的CO2吸附材料的设计及"构-效"关系,具体包括有机胺调控的氧化物、多孔碳材料、硅基分子筛和金属-有机框架材料的合成及CO2吸附机理.同时,展望了有机胺调控的CO2吸附材料面临的科学挑战及发展机遇.

English Abstract

参考文献 (118)

目录

/

返回文章
返回