免模板法合成高纯介孔氧化镁纳米抗菌剂

史松昌, 王琦, 张志康, 崔传金, 张小乐, 王巍杰. 免模板法合成高纯介孔氧化镁纳米抗菌剂[J]. 环境化学, 2020, (3): 800-808. doi: 10.7524/j.issn.0254-6108.2019103101
引用本文: 史松昌, 王琦, 张志康, 崔传金, 张小乐, 王巍杰. 免模板法合成高纯介孔氧化镁纳米抗菌剂[J]. 环境化学, 2020, (3): 800-808. doi: 10.7524/j.issn.0254-6108.2019103101
SHI Songchang, WANG Qi, ZHANG Zhikang, CUI Chuanjin, ZHANG Xiaole, WANG Weijie. Template-free synthesis of high-purity mesoporous MgO nanoparticles as antimicrobial[J]. Environmental Chemistry, 2020, (3): 800-808. doi: 10.7524/j.issn.0254-6108.2019103101
Citation: SHI Songchang, WANG Qi, ZHANG Zhikang, CUI Chuanjin, ZHANG Xiaole, WANG Weijie. Template-free synthesis of high-purity mesoporous MgO nanoparticles as antimicrobial[J]. Environmental Chemistry, 2020, (3): 800-808. doi: 10.7524/j.issn.0254-6108.2019103101

免模板法合成高纯介孔氧化镁纳米抗菌剂

    通讯作者: 张小乐, E-mail: smilxin@126.com
  • 基金项目:

    国家自然科学基金(21377034),河北省科学技术研究与发展计划项目(11215183)和河北省食品药品监督管理局科技计划项目(QN2015012)资助.

Template-free synthesis of high-purity mesoporous MgO nanoparticles as antimicrobial

    Corresponding author: ZHANG Xiaole, smilxin@126.com
  • Fund Project: Supported by the National Natural Science Foundation of China (21377034),Science and Technology Research and Development Program of Hebei Province, China (11215183) and Research Project of Hebei Provincial Administration of Traditional Chinese Medicine, China (QN2015012).
  • 摘要: 通过尿素和四水合乙酸镁的水热沉淀反应合成了多孔碳酸镁纳米带,再经高温煅烧制备了高纯度介孔氧化镁纳米颗粒.对所得材料进行了结构性质的表征,并利用最小抑菌浓度试验、抑菌圈试验、和摇瓶灭活试验考察了该材料对常见致病菌的抗菌活性.结果表明,该材料平均粒径为50 nm,含有许多直径约为3 nm的介孔,比表面积可达193.7 m2·g-1,并赋予材料大量的缺陷位点和较高的抗菌活性,500 mg·L-1的材料在24 h内对大肠杆菌和金黄色葡萄球菌可达到99.9%的杀菌百分率.此外,X射线晶体衍射、元素组成分析和X射线光电子能谱分析证实,以尿素和乙酸镁为前体,可以获得高纯度纳米氧化镁材料.
  • 加载中
  • [1] 张小乐,朱雨荷,李轻彩,等. 氧化镁纳米材料抗菌机理的研究进展[J]. 环境化学,2014,33(9):1538-1545.

    ZHANG X L, ZHU Y H, LI Q C, et al. Research progress of the antibacterial mechanism of magnesium oxide nano-materials[J]. Environmental Chemistry, 2014, 33(9):1538-1545(in Chinese).

    [2] MAKHLUF S, DROR R, NITZAN Y, et al. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J]. Advanced Functional Materials, 2005, 15:1708-1715.
    [3] ZHANG K Q, AN Y, ZHANG L, et al. Preparation of controlled nano-MgO and investigation of its bactericidal properties[J]. Chemosphere, 2012, 89:1414-1418.
    [4] JIN T, HE Y P. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens[J]. Journal of Nanoparticle Research, 2011, 13:6877-6885.
    [5] LEUNG Y H, NG A M, XU X, et al. Mechanisms of antibacterial activity of MgO-Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J]. Small, 2014, 10:1171-1183.
    [6] SAWAI J, YOSHIKAWA T, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay[J]. Journal of Applied Microbiology, 2004, 96:803-809.
    [7] KRISHNAMOORTHY K, MANIVANNAN G, KIM S J, et al. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy[J]. Journal of Nanoparticle Research, 2012, 14:1063-1072.
    [8] SUNDRARAJAN M, SURESH J, GANDHI R R, A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature[J]. Digest Journal of Nanomaterials and Biostructures, 2012, 7:983-989.
    [9] TANG Z X, LV B F. MgO nanoparticles as antibacterial agent:Preparation and activity[J]. Brazilian Journal of Chemical Engineering, 2014, 31:591-601.
    [10] JIU J T, KURUMADA K, TANIGAKI M, et al. Preparation of nanoporous MgO using gel as structure-direct template[J]. Materials Letters, 2003, 58:44-47.
    [11] MASHAYEKH-SALEHI A, MOUSSAVI G, YAGHMAEIAN K, Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant[J]. Chemical Engineering Journal, 2017, 310:157-169.
    [12] JEON H, KIM D J, KIM S J, et al. Synthesis of mesoporous MgO catalyst templated by a PDMS-PEO comb-like copolymer for biodiesel production[J]. Fuel Processing Technology, 2013, 116:325-331.
    [13] LI X C, XIAO W, HE G H, et al. Pore size and surface area control of MgO nanostructures using a surfactant-templated hydrothermal process:High adsorption capability to azo dyes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 408:79-86.
    [14] CUI H M, WU X F, CHEN Y F, et al. Synthesis and characterization of mesoporous MgO by template-free hydrothermal method[J]. Materials Research Bulletin, 2014, 50:307-311.
    [15] GAO C L, ZHANG W L, LI H B, et al. Controllable fabrication of mesoporous mgo with various morphologies and their absorption performance for toxic pollutants in water[J]. Crystal Growth & Design, 2008, 8:3785-3790.
    [16] ZHOU J B, YANG S L, YU J G, Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 379:102-108.
    [17] DHAL J P, SETHI M, MISHRA B G, et al. MgO nanomaterials with different morphologies and their sorption capacity for removal of toxic dyes[J]. Materials Letters, 2015, 141:267-271.
    [18] FENG J, ZOU L Y, WANG Y T, et al. Synthesis of high surface area, mesoporous MgO nanosheets with excellent adsorption capability for Ni(Ⅱ) via a distillation treating[J]. Journal of Colloid and Interface Science, 2015, 438:259-267.
    [19] ALAVI M A, MORSALI A, Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method[J]. Ultrasonics Sonochemistry, 2010, 17:441-446.
    [20] VELDURTHI S, SHIN C H, JOO O S, et al. Synthesis of mesoporous MgO single crystals without templates[J]. Microporous and Mesoporous Materials, 2012, 152:31-36.
    [21] RAO Y Y, WANG W, TAN F T, et al. Sol-gel preparation and antibacterial properties of Li-doped MgO nanoplates[J]. Ceramics International, 2014, 40:14397-14403.
    [22] MENG X, LIU Z M, DENG C, et al. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal[J]. Journal of Hazardous Materials, 2016, 320:495-503.
    [23] CUI H M, WU X F, CHEN Y F, et al. Influence of copper doping on chlorine adsorption and antibacterial behavior of MgO prepared by co-precipitation method[J]. Materials Research Bulletin, 2015, 61:511-518.
    [24] GOGOI S K, GOPINATH P, PAUL A, et al. Green fluorescent protein-expressing escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles[J]. Langmuir, 2006, 22:9322-9328.
    [25] MATTEIS L D, CUSTARDOY L, FERNÁNDEZ-PACHECO R, et al. Ultrathin MgO coating of superparamagnetic magnetite nanoparticles by combined coprecipitation and sol-gel synthesis[J]. Chemistry of Materials, 2012, 24:451-456.
    [26] GAJENGI A L, SASAKI T, BHANAGE B M, Mechanistic aspects of formation of MgO nanoparticles under microwave irradiation and its catalytic application[J]. Advanced Powder Technology, 2017, 28:1185-1192.
    [27] RAO Y Y, WANG W, F. TAN T, et al. Influence of different ions doping on the antibacterial properties of MgO nanopowders[J]. Applied Surface Science, 2013, 284:726-731.
    [28] ZHU X W, WU D, WANG W, et al. Highly effective antibacterial activity and synergistic effect of Ag-MgO nanocomposite against Escherichia coli[J]. Journal of Alloys and Compounds, 2016, 684:282-290.
    [29] LUO F, LU J W, WANG W, et al. Preparation and antibacterial activity of magnesium oxide nanoplates via sol-gel process[J]. Micro and Nano Letters, 2013, 8:479-482.
    [30] BHASKAR D, SAHOO M, SOUMEN G, et al. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus[J]. Materials Science & Engineering C, 2018, 91:436-444.
    [31] HIKKU G S, JEYASUBRAMANIAN K, KUMAR S V, Nanoporous MgO as self-cleaning and anti-bacterial pigment for alkyd based coating[J]. Journal of Industrial and Engineering Chemistry, 2017, 52:168-178.
    [32] HE Y P, INGUDAM S, REED S, et al. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens[J]. Journal of Nanobiotechnology, 2016, 14:54-62.
  • 加载中
计量
  • 文章访问数:  1503
  • HTML全文浏览数:  1503
  • PDF下载数:  29
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-31

免模板法合成高纯介孔氧化镁纳米抗菌剂

    通讯作者: 张小乐, E-mail: smilxin@126.com
  • 1. 华北理工大学生命科学学院, 唐山, 063210;
  • 2. 华北理工大学电气工程学院, 唐山, 063210
基金项目:

国家自然科学基金(21377034),河北省科学技术研究与发展计划项目(11215183)和河北省食品药品监督管理局科技计划项目(QN2015012)资助.

摘要: 通过尿素和四水合乙酸镁的水热沉淀反应合成了多孔碳酸镁纳米带,再经高温煅烧制备了高纯度介孔氧化镁纳米颗粒.对所得材料进行了结构性质的表征,并利用最小抑菌浓度试验、抑菌圈试验、和摇瓶灭活试验考察了该材料对常见致病菌的抗菌活性.结果表明,该材料平均粒径为50 nm,含有许多直径约为3 nm的介孔,比表面积可达193.7 m2·g-1,并赋予材料大量的缺陷位点和较高的抗菌活性,500 mg·L-1的材料在24 h内对大肠杆菌和金黄色葡萄球菌可达到99.9%的杀菌百分率.此外,X射线晶体衍射、元素组成分析和X射线光电子能谱分析证实,以尿素和乙酸镁为前体,可以获得高纯度纳米氧化镁材料.

English Abstract

参考文献 (32)

目录

/

返回文章
返回