CTAC改性活性炭制备CDI电极性能

刘晓艳, 王一楠, 陆谢娟, 陈才, 吴晓晖, 毛娟. CTAC改性活性炭制备CDI电极性能[J]. 环境化学, 2020, (3): 821-827. doi: 10.7524/j.issn.0254-6108.2019100902
引用本文: 刘晓艳, 王一楠, 陆谢娟, 陈才, 吴晓晖, 毛娟. CTAC改性活性炭制备CDI电极性能[J]. 环境化学, 2020, (3): 821-827. doi: 10.7524/j.issn.0254-6108.2019100902
LIU Xiaoyan, WANG Yinan, LU Xiejuan, CHEN Cai, WU Xiaohui, MAO Juan. Investigation on the electrode performance of CTAC modified activated carbon in capacitive deionization[J]. Environmental Chemistry, 2020, (3): 821-827. doi: 10.7524/j.issn.0254-6108.2019100902
Citation: LIU Xiaoyan, WANG Yinan, LU Xiejuan, CHEN Cai, WU Xiaohui, MAO Juan. Investigation on the electrode performance of CTAC modified activated carbon in capacitive deionization[J]. Environmental Chemistry, 2020, (3): 821-827. doi: 10.7524/j.issn.0254-6108.2019100902

CTAC改性活性炭制备CDI电极性能

    通讯作者: 陆谢娟, E-mail: xiejuan_lu@163.com
  • 基金项目:

    国家重点研发计划项目(2016YFC0400704)资助.

Investigation on the electrode performance of CTAC modified activated carbon in capacitive deionization

    Corresponding author: LU Xiejuan, xiejuan_lu@163.com
  • Fund Project: Supported by the National Key Research and Development Program of China (2016YFC0400704).
  • 摘要: 采用十六烷基三甲基氯化铵(CTAC)改性粉末活性炭(PAC),来提高活性炭电极的电化学性能和电极对砷离子的吸附能力.以质量浓度为1 mmol·L-1的CTAC改性粉末活性炭(PAC)12 h,并以此活性炭制备电极,电极的比电容为67 F·g-1,相比未改性PAC电极提升45%,电极扩散电阻稍有增加.通过优化电极制备成分配比,以CB:PVDF:CTAC-PAC=15:5:80比例制备的CTAC-PAC电极的比电容为112 F·g-1,相比未改性PAC电极提升143%,扩散电阻稍有增加.在100 μg·L-1砷溶液吸附实验中,优化制备条件后的CTAC-PAC电极,对砷离子吸附量相比未改性PAC电极提升32%,出水砷浓度为8 μg·L-1.
  • 加载中
  • [1] 黄宽, 唐浩, 刘丹阳, 等. 电容去离子技术综述(一):理论基础[J]. 环境工程, 2016, 34(S1):82-88.

    HUANG K,TANG H, LIU D Y,et al. A review of capacitive deionization technology:Part1. Theoretical Foundations[J].Environmental Engineering, 2016, 34(S1):82-88(in Chinese).

    [2] 刘红, 王刚, 王六平, 等. 电容去离子脱盐技术:离子交换膜复合活性炭电极的性能[J]. 化工学报, 2012, 63(5):1512-1516.

    LIU H,WANG G,WANG L P, et al. Capacitive deionization (CDI) technology for desalination of sea water:Properties of carbon electrode materials made of activated carbon and ion-exchange membranes[J].Journal of Chemical Industry and Engineering (China), 2012, 63(5):1512-1516(in Chinese).

    [3] ZHANG C, HE D, MA J, et al. Faradaic reactions in capacitive deionization (CDI)-problems and possibilities:A review[J]. Water Research, 2018, 128:314-330.
    [4] ZHAO C, ZHANG L, GE R, et al. Treatment of low-level Cu(Ⅱ) wastewater and regeneration through a novel capacitive deionization-electro deionization (CDI-EDI) technology[J]. Chemosphere, 2019, 217:763-772.
    [5] LIU N, SUN S, HOU C. Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization[J]. Separation and Purification Technology, 2019, 215:403-409.
    [6] 崔春国. 砷的形态分析和形态研究[J].环境化学, 1984, 3(6):70-77.

    CUI C G. Speciation analysis and morphology study of arsenic[J]. Environmental Chemistry, 1984, 3(6):70-77(in Chinese).

    [7] 韩彩芸, 张六一, 邹照华, 等. 吸附法处理含砷废水的研究进展[J].环境化学, 2011, 30(2):517-523.

    HAN C Y, ZHANG L Y, ZOU Z H, et al. Research progress of arsenic contaminated wastewater treatment by adsorption method[J]. Environmental Chemistry, 2011, 30(2):517-523(in Chinese).

    [8] 陈保卫, LE X C. 中国关于砷的研究进展[J].环境化学, 2011, 30(11):1936-1943.

    CHEN B W, LE X C. Recent progress in arsenic research in China[J]. Environmental Chemistry, 2011, 30(11):1936-1943(in Chinese).

    [9] 崔智慧. 磁性氧化石墨烯负载砂子对水中As(Ⅴ)的动态吸附研究[D]. 长沙:湖南大学, 2014. CUI Z H. Fixed-bed column study for the removal of arsenate from aqueous solutions using sand coated by magnetic graphene oxide adsorbent[D]. Changsha:Hunan University, 2014(in Chinese).
    [10] FAN C S, SYH L, HOU C H. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode[J]. Chemosphere, 2017, 184:924-928.
    [11] FAN C, TSENG S, LI K, et al. Electro-removal of arsenic (Ⅲ) and arsenic (Ⅴ) from aqueous solutions by capacitive deionization[J]. Journal of Hazardous Materials, 2016, 312:208-215.
    [12] HONG H, KIM H, BAEK K, et al. Removal of arsenate, chromate and ferricyanide by cationic surfactant modified powdered activated carbon[J]. Desalination, 2008, 223(1):221-228.
    [13] 黄伟. 电容去离子法电极材料脱盐特性及处理提钒高盐废水研究[D]. 武汉:武汉理工大学, 2014. HUANG W. Desalination characteristics of electrode materials used in capacitive deionization and treatment of wastewater produced in vanadium extraction[D]. Wuhan:Wuhan University of Technology, 2014(in Chinese).
    [14] 林淑英. 阳离子表面活性剂改性活性炭分析及对高氯酸盐的去除研究[D]. 上海:上海理工大学, 2014. LIN S Y. Investigation of factors that affect cationic surfactant loading on activated carbon and perchlorate adsorption[D]. Shanghai:Shanghai University of Technology, 2014(in Chinese).
    [15] 陈维芳, 程明涛, 张道方. CTAC改性活性炭去除水中砷(Ⅴ)的柱实验吸附和再生研究[J]. 环境科学学报, 2012, 32(1):150-156.

    CHEN W F, CHENG M T, ZHANG D F. Column studies on the adsorption of arsenate from water by cetyltrimethyl ammonium chloride-modified activated carbon and its regeneration[J].Acta Scientiae Circumstantiae, 2012, 32(1):150-156(in Chinese).

    [16] 陈维芳, 王宏岩, 于哲, 等. 阳离子表面活性剂改性的活性炭吸附砷(Ⅴ)和砷(Ⅲ)[J]. 环境科学学报, 2013, 33(12):3197-3204.

    CHEN W F, WANG H Y, YU Z, et al. Adsorption of arsenate and arsenite by cationic surfactant-modified activated carbon[J]. Acta Scientiae Circumstantiae, 2013, 33(12):3197-3204(in Chinese).

    [17] CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer.[J]. Science, 2006, 313(5794):1760-1763.
    [18] 王一楠. 阳离子表面活性剂改性活性炭电极对地下水中砷的吸附研究[D]. 武汉:武汉科技大学, 2019. WANG Y N. Adsorption of arsenic from groundwater by cationic surfactant modified activated carbon electrode[D]. Wuhan:Wuhan University of Science and Technology, 2019(in Chinese).
    [19] ZAFRA M C, LAVELA P, RASINES G, et al. A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water[J]. Electrochimica Acta, 2014,135(22):208-216.
  • 加载中
计量
  • 文章访问数:  1351
  • HTML全文浏览数:  1351
  • PDF下载数:  31
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-20

CTAC改性活性炭制备CDI电极性能

    通讯作者: 陆谢娟, E-mail: xiejuan_lu@163.com
  • 1. 武汉科技大学城市建设学院, 武汉, 430065;
  • 2. 华中科技大学环境科学与工程学院, 武汉, 430074
基金项目:

国家重点研发计划项目(2016YFC0400704)资助.

摘要: 采用十六烷基三甲基氯化铵(CTAC)改性粉末活性炭(PAC),来提高活性炭电极的电化学性能和电极对砷离子的吸附能力.以质量浓度为1 mmol·L-1的CTAC改性粉末活性炭(PAC)12 h,并以此活性炭制备电极,电极的比电容为67 F·g-1,相比未改性PAC电极提升45%,电极扩散电阻稍有增加.通过优化电极制备成分配比,以CB:PVDF:CTAC-PAC=15:5:80比例制备的CTAC-PAC电极的比电容为112 F·g-1,相比未改性PAC电极提升143%,扩散电阻稍有增加.在100 μg·L-1砷溶液吸附实验中,优化制备条件后的CTAC-PAC电极,对砷离子吸附量相比未改性PAC电极提升32%,出水砷浓度为8 μg·L-1.

English Abstract

参考文献 (19)

目录

/

返回文章
返回