LAN J W, LIU M S, LU X Y, et al. Novel 3D nitrogen-rich metal organic framework for highly efficient CO2 adsorption and catalytic conversion to cyclic carbonates under ambient temperature[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7):8727-8735.
LAN D H, CHEN L, AU C T, et al. One-pot synthesized multi-functional grapheme oxide as a water-tolerant and efficient metal-free heterogeneous catalyst for cycloaddition reaction[J]. Carbon, 2015,93:22-31.
LAN D H, GONG Y X, TAN N Y, et al. Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions[J]. Carbon, 2018, 127:245-254.
VENNA S R, CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2010, 132(1):76-78.
夏芝香, 项群扬, 周旭萍, 等. 氨水混合吸收剂脱除CO2实验研究[J]. 环境科学, 2014, 35(7):2508-2514. XIA Z X, XIANG Q Y, ZHOU X P, et al. Experimental study on CO2 absorption by aqueous ammonia-based blended absorbent[J]. Environmental Science, 2014, 35(7):2508-2514(in Chinese).
陈杰, 郭清, 花亦怀, 等. MDEA+MEA/DEA混合胺液脱碳性能实验研究[J]. 天然气工业, 2014, 34(5):137-143. CHEN J, GUO Q, HUA Y H, et al. An experimental study of absorption and desorption of blended amine solutions MDEA + MEA/DEA for natural gas decarburization[J]. Natural Gas Industry, 2014, 34(5):137-143(in Chinese).
刘维伟, 胡松, 陈文, 等. 功能型离子液体的合成表征及CO2吸收性能[J]. 化工学报, 2012, 63(1):139-145. LIU W W, HU S, CHEN W, et al. Synthesis and identification of functional ionic liquids and research on its performance of CO2 absorption[J]. Journal of Chemical Industry and Engineering, 2012, 63(1):139-145(in Chinese).
BEN-MANSOUR, R, HABIB M A, BAMIDELE O E, et al. Carbon capture by physical adsorption:Materials, experimental investigations and numerical modeling and simulations-A review[J]. Applied. Energy, 2016, 161:225-255.
CHEN S, YANG F M, CHEN L. Synthesis of triethylenetetramine functionalized mesoporous ZrO2 adsorbents for CO2 capture[J]. Journal of Natural Science of Hunan Normal University, 2017, 40(1):51-59.
PSARRAS P, HE J, WILCOX J. Effect of water on the CO2 adsorption capacity of amine-functionalized carbon sorbents[J]. Industrial & Engineering Chemistry Research, 2017, 56(21):6317-6325.
GHOLIDOUST A, ATKINSON J D, HASHISHO Z. Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke[J]. Energy and Fuels, 2017, 31:1756-1763.
KISHOR R, GHOSHAL A K. Amine-modified mesoporous silica for CO2 adsorption:The role of structural parameters[J]. Industrial & Engineering Chemistry Research, 2017, 56(20):6078-6087.
SANZ-PEREZ E S, DANTAS T C M. Reuse and recycling of amine-functionalized silica materials for CO2 adsorption[J]. Chemical Engineering Jouranl, 2017, 308(15):1021-1033.
李艳南, 程军, 刘建忠, 等. 分子筛SBA-15负载离子液体[P66614] [Triz] 脱除氢烷气中CO2[J]. 化工学报, 2018, 69(1):2526-532. LI Y N, CHENG J, LIU J Z, et al. CO2 removal from biohythane by absorption in ionic liquid[P66614] [Triz] loaded on molecular sieve SBA-15[J]. Journal of Chemical Industry and Engineering, 2018, 69(1):2526-532(in Chinese).
葛慧, 苗媛媛, 赵云霞, 等. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1):32-40. GE H, MIAO Y Y, ZHAO Y X, et al. Research progress of modified metal-organic frameworks for CO2 capture[J]. Environmental Chemistry, 2018, 37(1):32-40(in Chinese).
DARUNTE L A, OETOMO A D, WALTON K S, et al. Direct air capture of CO2 using amine functionalized MIL-101(Cr)[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10):5761-5768.
LI H, WANG K, FENG D, et al. Incorporation of alkylamine into metal-organic rrameworks through a brønsted acid-base reaction for CO2 capture[J]. ChemSusChem, 2016, 9(19):2832-2840.
ZHU J, USOV P M, XU W, et al. A new class of metal-cyclam-based zirconium metal-organic frameworks for CO2 adsorption and chemical fixation[J]. Journal of the American Chemical Society, 2018, 140(3):993-1003.
COGSWELLA C F, XIEA Z, WOLEKA A. Pore structure-CO2 adsorption property-relations of supported amine materials with multi-pore networks[J]. Journal of Materials Chemistry A, 2017, 5:8526-8536.
LIU F, CHEN S, GAO Y. Synthesis of porous polymer based solid amine adsorbent:Effect of pore size and amine loading on CO2 adsorption[J]. Journal of Colloid and Interface Science, 2017, 506:236-244.
XU X C, SONG C S, ANDRESEN J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy and Fuels, 2002, 16:1463-1469.
YOUNAS M, SOHAIL M, LEONG K, et al. Feasibility of CO2 adsorption by solid adsorbents:A review on low-temperature systems[J]. International Journal of Environmental Science, 2016, 13(7):1839-1860.
CHANG A C C, CHUANG S S C, GRAY M. et al. In-Situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(Aminopropyl)triethoxysilane[J]. Energy and Fuels, 2003, 17:468-473.
LI K, KRESS J D, MEBANE D S. The mechanism of CO2 adsorption under dry and humid conditions in mesoporous silica-supported amine sorbents[J]. Journal of Physical Chemistry C, 2016, 120:23683-23691.
PLANAS N, DZUBAK A L, POLONI R, et al. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework[J]. Journal of the American Chemical Society, 2013, 135(20):7402-7405.
MONAZAM E R, SHADLE L J, MILLER D C, et al. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica[J]. AIChE Journal, 2013, 59(3):923-935.
YANG F M, LIU Y, CHEN L, et al. Synthesis of amine-modified solid Fe-Zr adsorbents for CO2 adsorption[J]. Journal of Chemical Technology & Biotechnology, 2016, 91:2340-2348.
ZHOU L, FAN J, CUI G, et al. Highly efficient and reversible CO2 adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels[J]. Green Chemitry, 2014, 16:4009-4016.
GOEL C, BHUNIA H, BAJPAI P K. Resorcinol-formaldehyde based nanostructured carbons for CO2 adsorption:Kinetics, isotherm and thermodynamic studies[J]. RSC Advances, 2015, 5:93563-93578.
SMITH D G A, PATKOWSKI K. Benchmarking the CO2 adsorption energy on carbon nanotubes[J]. The Journal of Physical Chemistry C, 2015, 119(9):4934-4948.
COSTA J S, GAMEZ P, BLACK C A, et al. Chemical modification of a bridging ligand inside a metal-organic framework while maintaining the 3D structure[J]. European Journal of Inorganic Chemistry, 2008, 2008(10):1551-1554.
DRAGE T C, BLACKMAN J M, PEVIDA C, et al. Evaluation of activated carbon adsorbents for CO2 capture in gasification[J]. Energy and Fuels, 2009, 23:2790-2796.
SIRIWARDANE R V, SHEN M S, FISHER E P, et al. Adsorption of CO2 on molecular sieves and activated carbon[J]. Energy and Fuels, 2001, 15:279-284.
OHS B, KRODEL M, WESSLING M, et al. Adsorption of carbon dioxide on solid amine-functionalized sorbents:A dual kinetic model[J]. Separation and Purification Technology, 2018, 204:13-20.
LIU Q, SHI J, ZHENG S, et al. Kinetics studies of CO2 adsorption/desorption on amine-functionalized multiwalled carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2014, 53:11677-11683.
ULLAH R, ATILHAN M, APARICIO S, et al. Insights of CO2 adsorption performance of amine impregnated mesoporous silica (SBA-15) at wide range pressure and temperature conditions[J]. International Journal of Greenhouse Gas Control, 2015, 43:22-32.
LIU Y M, Yu X J. Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized KIT-6[J]. Applied Energy, 2018, 211:51080-1088.
HOUSHMAND A, WAN DAUD W M A, LEE M G, et al. Carbon dioxide capture with amine-grafted activated carbon[J]. Water, Air, & Soil Pollution, 2012, 223:827-835.
RODRIGUEZ-MOSQUEDA R, PFEIFFER H. Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes[J]. The Journal of Physical Chemistry A, 2010, 114:4535-4541.
ZHAO Y, SHEN Y, BAI L, et al. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling[J]. Applied Surface Science, 2012, 261:708-716.
YANG F M, CHEN L, AU C T, et al. Preparation of triethylenetetramine-modified zirconosilicate molecular sieve for carbon dioxide adsorption[J]. Environmental Progress & Sustainable Energy, 2015, 34:1814-1821.
YIN W J, KRACK M, WEN B, et al. CO2 capture and conversion on rutile TiO2(110) in the water environment:Insight by first-principles calculations[J]. Journal of Physical Chemistry Letters, 2015, 6:2538-2545.
CAO Y, HU S, YU M, et al. Adsorption and interaction of CO2 on rutile TiO2(110) surfaces:A combined UHV-FTIRS and theoretical simulation study[J]. Physical Chemistry Chemical Physics, 2015, 17:23994-24600.
陈林, 丁玉栋, 朱恂, 等. 高比表面积MgO颗粒制备及其CO2吸附性能研究[J]. 工程物理学报, 2016,37(6):1243-1248. CHEN L, DING Y D, ZHU X, et al. Synthesis of MgO pellets with high specific surface area and its CO2 adsorption property[J]. Journal of Engineering Thermophysics, 2016, 37(6):1243-1248(in Chinese).
SOLIS B H, CUI Y, WENG X, et al. Initial stages of CO2 adsorption on CaO:A combined experimental and computational study[J]. Physical Chemistry Chemical Physics, 2017, 19:4231-4242.
GUO H, FENG J, ZHAO Y, et al. Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO2 adsorption[J]. Journal of CO2 Utilization, 2017, 19:165-176.
KÖCK E M, KOGLER M, BIELZ T, et al. In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2[J]. Journal of Physical Chemistry C, 2013, 117(34):17666-17673.
LIU C X, ZHANG L, DENG J G, et al. Surfactant-aided hydrothermal synthesis and carbon dioxide adsorption behavior of three-dimensionally mesoporous calcium oxide single-crystallites with tri-, tetra-, and hexagonal morphologies[J]. Industrial & Engineering Chemistry Research, 2008, 112:19248-19256.
ZHAO X L, HU X, HU G S, et al. Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine[J]. Journal of Materials Chemistry A, 2013, 1:6208-6215.
SONG F, ZHAO Y, DING H, et al. Capture of carbon dioxide by amine-loaded as-synthesized TiO2 nanotubes[J]. Environmental Technology, 2013, 34(11):1405-1410.
LIAO Y, CAO S W, YUAN Y P, et al. Efficient CO2 capture and photoreduction by amine-functionalized TiO2[J]. European Journal of Chemistry, 2014, 20:10220-10222.
闫婷婷, 邢国龙, 贲腾. 一步碳化多孔有机材料制备多孔碳及其性能的研究[J]. 化学学报, 2018, 76(5):366-376. YAN T T, XING G L, BEN T. One-step strategy to synthesize porous carbons by carbonized porous organic materials and their applications[J]. Acta Chimica Sinica, 2018, 76:366-376(in Chinese).
KONGNOO A, INTHARAPAT P, WORATHANAKUL P, et al. Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):73-81.
KHALILI S, KHOSHANDAM B, JAHANSHAHI M. Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO2 adsorption[J]. RSC Advances, 2016, 6:35692-35704.
LIU L, NICHOISON D, BHATIA S K. Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons:A molecular simulation study[J]. Chemical Engineering Science, 2015, 121:268-278.
OH J, MO Y H, LE V D, et al. Borane-modified graphene-based materials as CO2 adsorbents[J]. Carbon, 2014, 79:450-456.
ALHWAIGE A, AGAG T, ISHIDA H, et al. Biobased chitosan hybrid aerogels with superior adsorption:role of graphene oxide in CO2 capture[J]. RSC Advances, 2013, 3:16011-16020.
LI W, JIANG X, YANG H, et al. Solvothermal synthesis and enhanced CO2 adsorption ability of mesoporous graphene oxide-ZnO nanocomposite[J]. Applied Surface Science, 2015, 356:812-816.
PLAZA M G, PEVIDA C, ARENILLAS A, et al. CO2 capture by adsorption with nitrogen enriched carbons[J]. Fuel, 2007, 86:2204-2212.
BEZERRA D P, OLIVEIRA R S, VIEIRA R S, et al. Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X[J]. Adsorption, 2011, 17:235-246.
BOONPOKE A, CHIARAKORN S, LAOSIRIPOJANA N, et al. Investigation of CO2 adsorption by bagasse-based activated carbon[J]. Korean Journal of Chemical Engineering, 2012, 29(1):89-94.
SU F, LU C, CHUNG A J, et al. CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption[J]. Applied Energy, 2014, 113:706-712.
IRURETAGOYENA D, SHAFFER M S P, CHADWICK D. Layered double oxides supported on graphene oxide for CO2 adsorption:effect of support and residual sodium[J]. Industrial & Engineering Chemistry Research, 2015, 54:6781-6792.
HONG S M, LEE K B. Solvent-assisted amine modification of graphite oxide for CO2 adsorption[J]. RSC Advances, 2014, 4:56707-56712.
SHIN G J, RHEE K Y, PARK S J. Improvement of CO2 capture by graphite oxide in presence of polyethylenimine[J]. International Journal of Hydrogen Energy, 2016, 41(32):14351-14359.
SUI Z Y, CUI Y, ZHU J H, et al. Preparation of three-dimensional graphene oxide-Polyethylenimine porous materials as dye and gas adsorbents[J]. ACS Applied Materials & Interfaces, 2013, 5:9172-9179.
CHAE I S, LEE J H, HONG J, et al. The platform effect of graphene oxide on CO2 transport on copper nanocomposites in ionic liquids[J]. Chemical Engineering Journal, 2014, 251:343-347.
XU J, XU M, WU J, et al. Graphene oxide immobilized with ionic liquids:facile preparation and efficient catalysis for solvent-free cycloaddition of CO2 to propylene carbonate[J]. RSC Advances, 2015, 5:72361-72368.
PALANISAMY T, RAMAPRABHU S. Amine-rich ionic liquid grafted graphene for sub-ambient carbon dioxide adsorption[J]. RSC Advances, 2016, 6:3032-3040.
JOOS L, SWISHER J A, SMIT B. Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X[J]. Langmuir, 2013, 29(51):15936-15942.
孔祥明, 杨颖, 沈文龙, 等. CO2/CH4/N2在沸石13X-APG上的吸附平衡[J]. 化工学报, 2013, 64(6):2117-2124. KONG X M, YANG Y, SHEN W L, et al. Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG[J]. Journal of Chemical Industry and Engineering (China), 2013, 64(6):2117-2124(in Chinese).
刘学武, 李文秀, 郑国锋, 等. 13X沸石分子筛低温变压吸附CO2/CH4实验研究[J]. 天然气化工(C1 化学与化工), 2017, 42:5-8. LIU X W, LI W X, ZHENG G F, et al. Low-temperature pressure swing adsorption of CO2/CH4 on zeolite 13X[J]. Natural Gas Chemical Industry, 2017, 42:5-8(in Chinese).
WU H Y, BAI H, WU J C S. Photocatalytic reduction of CO2 using Ti-MCM-41 photocatalysts in monoethanolamine solution for methane production[J]. Industrial & Engineering Chemistry Research, 2014, 53:11221-11227.
LAN B, HUANG R, LI L, et al. Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41 as catalyst[J]. Chemical Engineering Journal, 2013, 219:346-354.
SIRIWARDANE R V, SHEN M S, FISHER E P. Adsorption of CO2, N2, and O2 on natural zeolites[J]. Energy and Fuels, 2003, 17:571-576.
OLEA A, SANZ-PEREZ E S, ARENCIBIA A, et al. Amino-functionalized pore-expanded SBA-15 for CO2 adsorption[J]. Adsorption, 2013, 19:589-600.
LIU F, HUANG K, YOO C J, et al. Facilely synthesized meso-macroporous polymer as support of poly(ethyleneimine) for highly efficient and selective capture of CO2[J]. Chemical Engineering Journal, 2017, 314:466-476.
LE Y, GUO D, CHENG B, et al. Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability[J]. Journal of Colloid and Interface Science, 2013, 408:173-180.
ZHANG W, LIU H, Sun C, et al. Performance of polyethyleneimine-silica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 251:293-303.
CHENG J, LI Y N, HU L Q, et al. CO2 absorption and diffusion in ionic liquid[P66614] [Triz] modified molecular sieves SBA-15 with various pore lengths[J]. Fuel Processing Technology, 2018, 172:216-224.
CHENG J, LI Y, HU L, et al. CO2 adsorption performance of ionic liquid[P66614] [2-Op] loaded onto molecular sieve MCM-41 compared to pure ionic liquid in biohythane/pure CO2 atmospheres[J]. Energy and Fuels, 2016, 30:3251-3256.
CALLEJA G, SANZ R, ARENCIBIA A, et al. Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2[J]. Topics in Catalysis, 2011, 54:135-145.
KISHOR R, GHOSHAL A K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption[J]. Chemical Engineering Journal, 2015, 262:882-890.
VILARRASA-GARCIA E, CECILA J A, SANTOS S M L, et al. CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas[J]. Microporous and Mesoporous Materials, 2014, 187:125-134.
MINJU N, NAIR B N, PEER MOHAMED A, et al. Surface engineered silica mesospheres-a promising adsorbent for CO2 capture[J]. Separation and Purification Technology, 2017, 181:192-200.
KUWAHARA Y, KANG D Y, COPELAND J R, et al. Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports[J]. Journal of the American Chemical Society, 2012, 134:10757-10760.
YANG F M, LIU Y, CHEN L, et al. Triethylenetetramine-modified P123-occluded Zr-SBA-15 molecular sieve for CO2 adsorption[J]. Australian Journal of Chemistry, 2015, 68:1427-1433.
李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10):1350-1361. LI J W, REN Y W, JIANG H F. Application of metal-organic framework materials in the chemical fixation of carbon dioxide[J]. Progress in Chemistry, 2019, 31(10):1350-1361(in Chinese).
REN J, DYOSIBA X, MUSYOKA N, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs)[J]. Coordination Chemistry Reviews, 2017, 352:187-219.
MCDONALD T M, RAM LEE W, MASON J A, et al. Capture of carbon cioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)[J]. Journal of the American Chemical Society, 2012, 134:7056-7065.
KONDO A, KONJIMA N, KAJIRO H, et al. Gas adsorption mechanism and kinetics of an elastic layer-structured metal-organic framework[J]. Journal of Physical Chemistry C, 2012, 116:4157-4162.
EISENBERG D, STROEK W, GEELS N J, et al. A rational synthesis of hierarchically porous, N-doped carbon from Mg-based MOFs:Understanding the link between nitrogen content and oxygen reduction electrocatalysis[J]. Physical Chemistry Chemical Physics, 2016, 18:20778-20783.
CATTANEO D, WARRENDER S J, DUNCAN M J, et al. Tuning the nitric oxide release from CPO-27 MOFs[J]. RSC Advances, 2016, 6:14059-14067.
KRGER M, INGE A K, REINSCH H, et al. Polymorphous Al-MOFs based on V-shaped linker molecules:Synthesis, properties, and in situ investigation of their crystallization[J]. Inorganic Chemistry, 2017, 56(10):5851-5862.
TEO H W B, CHAKRABORRY A, KAYAL S. Evaluation of CH4 and CO2 adsorption on HKUST-1 and MIL-101(Cr) MOFs employing monte carlo simulation and comparison with experimental data[J]. Applied Thermal Engineering, 2017, 110:891-900.
ZHU N, ZOU Y, HUANG M, et al. A sensitive, colorimetric immunosensor based on Cu-MOFs and HRP for detection of dibutyl phthalate in environmental and food samples[J]. Talanta, 2018, 186:104-109.
KIM H C, HUH S, KIM J Y, et al. Zn-MOFs containing flexible α,ω-alkane (or alkene)-dicarboxylates with 1,2-bis(4-pyridyl)ethylene:comparison with Zn-MOFs containing 1,2-bis(4-pyridyl)ethane ligands[J]. CrystEngComm, 2017, 19:99-109.
YUAN S, QIN J S, ZOU L, et al. Thermodynamically guided synthesis of mixed-linker Zr-MOFs with enhanced tenability[J]. Journal of the American Chemical Society, 2016, 138(20):6636-6642.
SABOUNI R, KAZEMIAN H, ROHANI S. Carbon dioxide capturing technologies:A review focusing on metal organic framework materials (MOFs)[J]. Environmental Science and Pollution Research, 2014, 21:5427-5449.
CUI R H, XU Y H, JIANG Z. Syntheses, structures, and photoluminescence of two Cd(Ⅱ) coordination polymers constructed from analogue (pyridyl)imidazole derivative and polycarboxylate acid[J]. Inorganic Chemistry Communications, 2009, 12:933-936.
AN J, FIORELLA R P, GEIB S J, et al. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle[J]. Journal of the American Chemical Society, 2009, 131:8401-8403.
AN J, GEIB S J, ROSI N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine and mino-decorated pores[J]. Journal of the American Chemical Society, 2010, 132:38-39.
DARUNTE L A, TERADA Y, MURDOCK C R, et al. Monolith-supported amine-functionalized Mg2(dobpdc) adsorbents for CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(20):17042-17050.
POKHREL J, BHORIA N, ANASTASIOU S, et al. CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions[J]. Microporous and Mesoporous Materials, 2018, 267:53-67.
ABID H R, RADA Z H, DUAN X, et al. Enhanced CO2 adsorption and selectivity of CO2/N2 on amino-MIL-53(Al) synthesized by polar Co-solvents[J]. Energy and Fuels, 2018, 32(4):4502-4510.
LIN Y, KONG C, CHEN L. Amine-functionalized metal-organic frameworks:Structure, synthesis and applications[J]. RSC Advances, 2016, 6:32598-32614.
ZHAO Y, SEREDYCH M, JAGIELLO J, et al. Insight into the mechanism of CO2 adsorption on Cu-BTC and its composites with graphite oxide or aminated graphite oxide[J]. Chemical Engineering Journal, 2014, 239:399-407.
ZHAO Y, SEREDYCH M, ZHONG Q, et al. Aminated graphite oxides and their composites with copper-based metal-organic framework:In search for efficient media for CO2 sequestration[J]. RSC Advances, 2013, 3:9932-9941.
ZHAO Y, SEREDYCH M, ZHONG Q, et al. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature[J]. ACS Applied Materials & Interfaces, 2013, 5(11):4951-4959.
ZHANG Z, MA X, WANG D, et al. Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas[J]. AIChE Journal, 2012, 58(8):2495-2502.
BELMABKHOUT Y, SAYARI A. Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO2 capture from flue gas[J]. Energy and Fuels, 2010, 24:5273-5280.
BOURRELLY S, LIEWELLYN P L, SERRE C, et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47[J]. Journal of the American Chemical Society, 2005, 127(39):13519-13521.
SAKWA-NOVAK M, TAN S, JONES C W. Role of additives in composite PEI/oxide CO2 adsorbents:Enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air[J]. ACS Applied Materials & Interfaces, 2015, 7:24748-24759.
YUE M B, CHUN Y, CAO Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template[J]. Advanced Functional Material, 2006, 16:1717-1722.
DING S Y, WANG W. Covalent organic frameworks (COFs):From design to applications[J]. Chemical Society Reviews, 2013, 42:548-568.
COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310:1166-1170.