Pd/TiO2催化剂对三氯生的催化加氢脱氯研究

陶善倩, 吴可, 万玉秋, 郑寿荣. Pd/TiO2催化剂对三氯生的催化加氢脱氯研究[J]. 环境化学, 2016, 35(8): 1619-1626. doi: 10.7524/j.issn.0254-6108.2016.08.2016010603
引用本文: 陶善倩, 吴可, 万玉秋, 郑寿荣. Pd/TiO2催化剂对三氯生的催化加氢脱氯研究[J]. 环境化学, 2016, 35(8): 1619-1626. doi: 10.7524/j.issn.0254-6108.2016.08.2016010603
TAO Shanqian, WU Ke, WAN Yuqiu, ZHENG Shourong. Catalytic hydrodechlorination of triclosan over Pd/TiO2[J]. Environmental Chemistry, 2016, 35(8): 1619-1626. doi: 10.7524/j.issn.0254-6108.2016.08.2016010603
Citation: TAO Shanqian, WU Ke, WAN Yuqiu, ZHENG Shourong. Catalytic hydrodechlorination of triclosan over Pd/TiO2[J]. Environmental Chemistry, 2016, 35(8): 1619-1626. doi: 10.7524/j.issn.0254-6108.2016.08.2016010603

Pd/TiO2催化剂对三氯生的催化加氢脱氯研究

  • 基金项目:

    国家科技部973项目(2014CB441103)和国家自然科学基金(21277066)资助.

Catalytic hydrodechlorination of triclosan over Pd/TiO2

  • Fund Project: Supported by the National Key Basic Research Program of China (2014CB441103) and Natural Science Foundation of China (21277066).
  • 摘要: 采用沉淀-沉积法制备不同载体的Pd负载型催化剂,采用透射电镜(TEM)、X-射线衍射(XRD)和电感耦合等离子体发射光谱(ICP-AES)对材料进行表征;并以所得材料为催化剂对三氯生(TCS)的催化加氢脱氯反应进行了研究.结果表明,Pd/TiO2型催化剂在TCS加氢脱氯反应中具有较好的效果,反应活性随着Pd负载量的提高而增强.当反应物初始浓度为0.016 mmol·L-1,pH值为10,催化剂0.36% Pd/TiO2用量为20 mg时,TCS在70 min可以完成脱氯过程.碱性条件下,pH的升高不利于反应的进行.当催化剂用量在15-25 mg时,催化剂质量标化的反应初活性没有明显变化,表明催化反应过程不受传质阻力的影响.当反应物初始浓度在0.009-0.02 mmol·L-1时,反应初活性随浓度的提高显著增加,但进一步增加反应物的浓度时初活性没有明显提高,因此,TCS在Pd/TiO2催化剂上的脱氯行为符合Langmuir-Hinshelwood模型,表明TCS的加氢脱氯受表面吸附所控制.催化反应的过程中生成多种脱氯中间产物,反应的最终产物为2-羟基二苯醚.
  • 加载中
  • [1] PERENCEVICH E N, WONG M T, HARRIS A D.National and regional assessment of the antibacterial soap market:A step toward determining the impact of prevalent antibacterial soaps[J]. American Journal of Infection Control, 2001, 29(5):281-283.
    [2] ZHAO J L, ZHANG Q Q, CHEN F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools:Implications for controlling of urban domestic sewage discharge[J]. Water Research, 2013,47(1):395-405.
    [3] United States Environmental Protection Agency. Estimating Exposure to Dioxin-Like Compounds[R]. Washington D C:Office of Water, Office of Science and Technology, 1994.
    [4] MENOUTIS J, PARISI A I. Testing for dioxin and furan contamination in triclosan[J].Cosmetics and Toiletries, 2002, 117(10):75-78.
    [5] LATCH D E, PACKER J L, ARNOLD W A, et al. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution[J]. Journal of Photochemistry and PhotobiologyA:Chemistry, 2003, 158(1):63-66.
    [6] RULE K L, EBBETT V R, VIKESLAND P J. Formation of chloroform and chlorinated organics by free-chlorinemediated oxidation of triclosan[J]. Environmental Science & Technology,2005, 39(9):3176-3185.
    [7] SON H S, KHIM J, ZOH K D. Degradation of triclosan in the combined reaction of Fe2+and UV-C:Comparison with the Fenton and photolytic reactions[J]. Environmental Progress & Sustainable Energy, 2010,29(4):415-420.
    [8] KIM Y M, MURUGESAN K, SCHMIDT S, et al. Triclosan susceptibility and cometabolism A comparison for three aerobic pollutant-degrading bacteria[J]. Bioresource Technology, 2011, 102(3):2206-2212.
    [9] BEHERA S K, OH S Y, PARK H S. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite:Effects of pH, ionic strength, and humic acid[J]. Journal of Hazardous Materials, 2010, 179(1):684-691.
    [10] VLADIMIR I KOVALCHUK, JULIE L D'ITRI. Catalytic chemistry of chloro and chlorofluorocarbon dehalogenation:From macroscopic observation to molecular level understanding[J].Applied Catalysis A:General, 2004, 271:13-25.
    [11] XIAC H,LIU Y,ZHOU S W,et al.The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions:A promising approach to practical use in wastewater[J].Journal of Hazardous materials,2009,169:1029-1033.
    [12] YUAN G, KEANE M A. Role of base addition in the liquid-phase hydrodechlorination of 2, 4-dichlorophenol over Pd/Al2O3 and Pd/C[J].Journal of Catalysis,2004, 225(2):510-522.
    [13] PANAGIOTOPOULOU P,KONDARIDES D I. Effect of morphologicalcharacteristics of TiO2-supported noble metal catalysts on theiractivity for the water-gas shift reaction[J].Journal of Catalysis,2004,225(2):327-336.
    [14] WANG M,GUO D J,LI H L. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation[J].Journal ofSolid State Chemistry,2005,178(6):1996-2000.
    [15] WOJCIESZAK R,GENET M J,ELOY P,et al. Determination of thesize of supported Pd nanoparticles by X-ray photoelectronspectroscopy. Comparison with X-ray diffraction,transmissionelectron microscopy,and H2 chemisorption methods[J].Journal of Physical Chemistry C,2010,114(39):16677-16684.
    [16] YUAN G,KEANE M A.Liquid phase catalytic hydrodechlorinationof 2,4-dichlorophenol over carbon supported palladium:Anevaluation of transport limitations[J].Chemical Engineering Science,2003,58(2):257-267.
    [17] 刘冬,周娟,万玉秋,等.碳纳米管负载Pd基催化剂对水中2,4-二氯酚的催化加氢脱氯[J].环境化学,2013,32(3):351-357.

    LIU D, ZHOU J,WAN Y Q.Catalytic hydrodechlorination of 2,4-dichlorophenolover carbon nanotube supported Pd catalysts[J].Environmental Chemistry,2013,32(3):351-357(in Chinese).

    [18] ILINITCH O M, CUPERUS F P, NOSOVA L V, et al. Catalytic membrane in reduction of aqueous nitrates:Operational principles and catalytic performance[J]. Catalysis Today, 2000, 56:137-145.
    [19] YUAN G, KEANE M A. Aqueous-phase hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3:Reaction under controlled pH[J].Industrial and Engineering Chemistry Research, 2007,46(3):705-715.
    [20] GUMY D,GIRADO S A,RENGIFO J, et al. Effect of suspended TiO2 physicochemical characteristics on benzene derivatives photocatalytic degradation[J].Applied Catalysis B:Environmental, 2008,78(1-2):19-29.
    [21] KOSMULSKI M.pH-dependent surface charging and points of zero charge. Ⅳ. Update and new approach[J].Journal of Colloid Interface Science, 2009, 337(2):439-448.
    [22] MOGYORÓSI K,BALÁZA N,SRANKÓ D F, et al. The effect of particle shape on the activity of nanocrystalline TiO2photocatalysts in phenol decomposition. Part 3:The importance of surface quality[J]. Applied Catalysis B:Environmental, 2010, 96(3-4):577-585.
  • 加载中
计量
  • 文章访问数:  1242
  • HTML全文浏览数:  1166
  • PDF下载数:  424
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-06
  • 刊出日期:  2016-08-15
陶善倩, 吴可, 万玉秋, 郑寿荣. Pd/TiO2催化剂对三氯生的催化加氢脱氯研究[J]. 环境化学, 2016, 35(8): 1619-1626. doi: 10.7524/j.issn.0254-6108.2016.08.2016010603
引用本文: 陶善倩, 吴可, 万玉秋, 郑寿荣. Pd/TiO2催化剂对三氯生的催化加氢脱氯研究[J]. 环境化学, 2016, 35(8): 1619-1626. doi: 10.7524/j.issn.0254-6108.2016.08.2016010603
TAO Shanqian, WU Ke, WAN Yuqiu, ZHENG Shourong. Catalytic hydrodechlorination of triclosan over Pd/TiO2[J]. Environmental Chemistry, 2016, 35(8): 1619-1626. doi: 10.7524/j.issn.0254-6108.2016.08.2016010603
Citation: TAO Shanqian, WU Ke, WAN Yuqiu, ZHENG Shourong. Catalytic hydrodechlorination of triclosan over Pd/TiO2[J]. Environmental Chemistry, 2016, 35(8): 1619-1626. doi: 10.7524/j.issn.0254-6108.2016.08.2016010603

Pd/TiO2催化剂对三氯生的催化加氢脱氯研究

  • 1. 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京, 210046
基金项目:

国家科技部973项目(2014CB441103)和国家自然科学基金(21277066)资助.

摘要: 采用沉淀-沉积法制备不同载体的Pd负载型催化剂,采用透射电镜(TEM)、X-射线衍射(XRD)和电感耦合等离子体发射光谱(ICP-AES)对材料进行表征;并以所得材料为催化剂对三氯生(TCS)的催化加氢脱氯反应进行了研究.结果表明,Pd/TiO2型催化剂在TCS加氢脱氯反应中具有较好的效果,反应活性随着Pd负载量的提高而增强.当反应物初始浓度为0.016 mmol·L-1,pH值为10,催化剂0.36% Pd/TiO2用量为20 mg时,TCS在70 min可以完成脱氯过程.碱性条件下,pH的升高不利于反应的进行.当催化剂用量在15-25 mg时,催化剂质量标化的反应初活性没有明显变化,表明催化反应过程不受传质阻力的影响.当反应物初始浓度在0.009-0.02 mmol·L-1时,反应初活性随浓度的提高显著增加,但进一步增加反应物的浓度时初活性没有明显提高,因此,TCS在Pd/TiO2催化剂上的脱氯行为符合Langmuir-Hinshelwood模型,表明TCS的加氢脱氯受表面吸附所控制.催化反应的过程中生成多种脱氯中间产物,反应的最终产物为2-羟基二苯醚.

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回