水体中二氧化钛(P25)光催化降解甲芬那酸的机理

陈平, 王枫亮, 苏海英, 王盈霏, 马京帅, 李富华, 姚琨, 吕文英, 刘国光. 水体中二氧化钛(P25)光催化降解甲芬那酸的机理[J]. 环境化学, 2016, 35(8): 1627-1635. doi: 10.7524/j.issn.0254-6108.2016.08.2016010608
引用本文: 陈平, 王枫亮, 苏海英, 王盈霏, 马京帅, 李富华, 姚琨, 吕文英, 刘国光. 水体中二氧化钛(P25)光催化降解甲芬那酸的机理[J]. 环境化学, 2016, 35(8): 1627-1635. doi: 10.7524/j.issn.0254-6108.2016.08.2016010608
CHEN Ping, WANG Fengliang, SU Haiying, WANG Yingfei, MA Jingshuai, LI Fuhua, YAO Kun, LYU Wenying, LIU Guoguang. Photo-catalytical degradation of mefenamic acid by TiO2(P25) in aqueous solution[J]. Environmental Chemistry, 2016, 35(8): 1627-1635. doi: 10.7524/j.issn.0254-6108.2016.08.2016010608
Citation: CHEN Ping, WANG Fengliang, SU Haiying, WANG Yingfei, MA Jingshuai, LI Fuhua, YAO Kun, LYU Wenying, LIU Guoguang. Photo-catalytical degradation of mefenamic acid by TiO2(P25) in aqueous solution[J]. Environmental Chemistry, 2016, 35(8): 1627-1635. doi: 10.7524/j.issn.0254-6108.2016.08.2016010608

水体中二氧化钛(P25)光催化降解甲芬那酸的机理

  • 基金项目:

    国家自然科学基金(21377031)资助.

Photo-catalytical degradation of mefenamic acid by TiO2(P25) in aqueous solution

  • Fund Project: Supported by the National Natural Science Foundation of China (21377031).
  • 摘要: 本文研究了甲芬那酸(MEF)在UV-P25光催化降解下的行为和产物.结果表明,在紫外光照下P25能够快速催化降解MEF,实验浓度下很好地符合准一级动力学模型,速率常数为0.338 min-1.碱性溶液有利于MEF的降解,随着pH值从5.0增加到10.0,速率常数从0.271 min-1增加到了0.388 min-1.采用硝基苯作为分子探针鉴定了P25光催化降解MEF过程中生成的羟基稳态浓度为0.58×10-12 mmol·L-1,通过异丙醇猝灭计算出羟基自由基贡献率为95.7%,由此推算MEF与羟基的实际二级反应速率常数为1.04×1010 L·(mol·s)-1.采用UPLC/MS/MS鉴定了MEF降解产物,推测MEF的光催化降解途径主要涉及脱氢反应、羟基化反应和酮化反应.发光菌急性毒性试验评价MEF降解过程中中间产物的毒性变化表明,UV-P25是一种有效降低MEF毒性的方法.
  • 加载中
  • [1] EVGENIDOU E N, KONSTANTINOU I K, LAMBROPOULOU D A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters:A review[J]. Science of the Total Environment, 2015, 505:905-926.
    [2] DRZYZGA O. Diphenylamine and derivatives in the environment:A review[J]. Chemosphere, 2003, 53(8):809-818.
    [3] TAUXE-WUERSCH A, DEALENCASTRO L F, GRANDJEAN D, et al. Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment[J]. Water Research, 2005, 39(9):1761-1772.
    [4] HILTON M J, Thomas K V. Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2003, 1015(1):129-141.
    [5] SUWALSKY M, MANRIQUE-MORENO M, HOWE J, et al. Molecular interactions of mefenamic acid with lipid bilayers and red blood cells[J]. Journal of the Brazilian Chemical Society, 2011, 22(12):2243-2249.
    [6] WANG A N, TENG Y, HU X F, et al. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis:Degradation pathway, optimization of operating parameters and effects of soil properties[J]. Science of the Total Environment, 2016, 541:348-355.
    [7] LIU C, QIANG Z, TIAN F, et al. Photodegradation of etridiazole by UV radiation during drinking water treatment[J]. Chemosphere, 2009, 76(5):609-615.
    [8] YANG, SHI Y, LI P, et al. Reaction site and mechanism in the UV or visible light induced TiO2 photodegradation of Orange G[J]. JES, 2006, 18(1):180-183.
    [9] JI Y, ZHOU L, FERRONATO C, et al. Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions:Kinetics, intermediates and degradation pathways[J]. Journal of Photochemistry & Photobiology A Chemistry, 2013, 254(7):35-44.
    [10] ZHENG S, CAI Y, O'SHEA K E. TiO2 photocatalytic degradation of phenylarsonic acid[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2010, 210(1):61-68.
    [11] ZEPP R G, FAUST B C, HOIGNE J. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (Ⅱ) with hydrogen peroxide:The photo-Fenton reaction[J]. Environmental Science & Technology, 1992, 26(2):313-319.
    [12] CHEN P, LV W, CHEN Z, et al. Phototransformation of mefenamic acid induced by nitrite ions in water:Mechanism, toxicity, and degradation pathways[J]. Environmental Science and Pollution Research, 2015:1-12.
    [13] MIYAMOTO G, ZAHID N, UETRECHT J P. Oxidation of diclofenac to reactive intermediates by neutrophils, myeloperoxidase, and hypochlorous acid[J]. Chemical Research in Toxicology, 1997, 10(4):414-419.
    [14] SEIN M M, ZEDDA M, TUERK J, et al. Oxidation of diclofenac with ozone in aqueous solution[J]. Environmental Science & Technology, 2008, 42(17):6656-6662.
    [15] JI Y, ZENG C, FERRONATO C, et al. Nitrate-induced photodegradation of atenolol in aqueous solution:Kinetics, toxicity and degradation pathways[J]. Chemosphere, 2012, 88(5):644-649.
    [16] SOUFAN M, DEBORDE M, LEGUBE B. Aqueous chlorination of diclofenac:Kinetic study and transformation products identification[J]. Water Research, 2012, 46(10):3377-3386.
    [17] VON SONNTAG C. Free-radical-induced DNA damage and its repair[M]. Berlin:Springer, 2006.
    [18] MA D, LIU G, LV W, et al. Photodegradation of naproxen in water under simulated solar radiation:Mechanism, kinetics, and toxicity variation[J]. Environmental Science and Pollution Research, 2014, 21(13):7797-7804.
  • 加载中
计量
  • 文章访问数:  1304
  • HTML全文浏览数:  1229
  • PDF下载数:  629
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-06
  • 刊出日期:  2016-08-15
陈平, 王枫亮, 苏海英, 王盈霏, 马京帅, 李富华, 姚琨, 吕文英, 刘国光. 水体中二氧化钛(P25)光催化降解甲芬那酸的机理[J]. 环境化学, 2016, 35(8): 1627-1635. doi: 10.7524/j.issn.0254-6108.2016.08.2016010608
引用本文: 陈平, 王枫亮, 苏海英, 王盈霏, 马京帅, 李富华, 姚琨, 吕文英, 刘国光. 水体中二氧化钛(P25)光催化降解甲芬那酸的机理[J]. 环境化学, 2016, 35(8): 1627-1635. doi: 10.7524/j.issn.0254-6108.2016.08.2016010608
CHEN Ping, WANG Fengliang, SU Haiying, WANG Yingfei, MA Jingshuai, LI Fuhua, YAO Kun, LYU Wenying, LIU Guoguang. Photo-catalytical degradation of mefenamic acid by TiO2(P25) in aqueous solution[J]. Environmental Chemistry, 2016, 35(8): 1627-1635. doi: 10.7524/j.issn.0254-6108.2016.08.2016010608
Citation: CHEN Ping, WANG Fengliang, SU Haiying, WANG Yingfei, MA Jingshuai, LI Fuhua, YAO Kun, LYU Wenying, LIU Guoguang. Photo-catalytical degradation of mefenamic acid by TiO2(P25) in aqueous solution[J]. Environmental Chemistry, 2016, 35(8): 1627-1635. doi: 10.7524/j.issn.0254-6108.2016.08.2016010608

水体中二氧化钛(P25)光催化降解甲芬那酸的机理

  • 1. 广东工业大学环境科学与工程学院, 广州, 510006
基金项目:

国家自然科学基金(21377031)资助.

摘要: 本文研究了甲芬那酸(MEF)在UV-P25光催化降解下的行为和产物.结果表明,在紫外光照下P25能够快速催化降解MEF,实验浓度下很好地符合准一级动力学模型,速率常数为0.338 min-1.碱性溶液有利于MEF的降解,随着pH值从5.0增加到10.0,速率常数从0.271 min-1增加到了0.388 min-1.采用硝基苯作为分子探针鉴定了P25光催化降解MEF过程中生成的羟基稳态浓度为0.58×10-12 mmol·L-1,通过异丙醇猝灭计算出羟基自由基贡献率为95.7%,由此推算MEF与羟基的实际二级反应速率常数为1.04×1010 L·(mol·s)-1.采用UPLC/MS/MS鉴定了MEF降解产物,推测MEF的光催化降解途径主要涉及脱氢反应、羟基化反应和酮化反应.发光菌急性毒性试验评价MEF降解过程中中间产物的毒性变化表明,UV-P25是一种有效降低MEF毒性的方法.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回