海水养殖区排水中溶解性有机质的光化学研究

刘远, 乔显亮, 陈一波, 陈景文. 海水养殖区排水中溶解性有机质的光化学研究[J]. 环境化学, 2016, 35(8): 1611-1618. doi: 10.7524/j.issn.0254-6108.2016.08.2015122901
引用本文: 刘远, 乔显亮, 陈一波, 陈景文. 海水养殖区排水中溶解性有机质的光化学研究[J]. 环境化学, 2016, 35(8): 1611-1618. doi: 10.7524/j.issn.0254-6108.2016.08.2015122901
LIU Yuan, QIAO Xianliang, CHEN Yibo, CHEN Jingwen. Photochemical activity of dissolved organic matter in the effluent from mariculture areas[J]. Environmental Chemistry, 2016, 35(8): 1611-1618. doi: 10.7524/j.issn.0254-6108.2016.08.2015122901
Citation: LIU Yuan, QIAO Xianliang, CHEN Yibo, CHEN Jingwen. Photochemical activity of dissolved organic matter in the effluent from mariculture areas[J]. Environmental Chemistry, 2016, 35(8): 1611-1618. doi: 10.7524/j.issn.0254-6108.2016.08.2015122901

海水养殖区排水中溶解性有机质的光化学研究

  • 基金项目:

    973项目(2013CB430403)和国家自然科学基金(21277018)资助.

Photochemical activity of dissolved organic matter in the effluent from mariculture areas

  • Fund Project: Supported by the National Basic Research Program of China (2013CB430403) and National Natural Science Foundation of China (21277018).
  • 摘要: 本研究通过光化学实验考察了莱州湾海水养殖区排水中溶解性有机质的光化学性质,并分析了排水中溶解性有机质的紫外可见吸收光谱和荧光光谱随养殖时期的变化.结果表明养殖排水中溶解性有机质光致生成活性物种如3DOM*、1O2和·OH的速率分别处于10-9(mol·L-1·s-1)、10-9(mol·L-1·s-1)和10-13(mol·L-1·s-1)的量级,并随养殖时期表现出一定的规律性,即退潮阶段大于涨潮阶段,养殖间歇期大于养殖作业期.光谱分析表明,类蛋白荧光峰是养殖作业期内的优势荧光峰,其在溶解性有机质组成中的贡献随养殖排水累积汇入呈逐渐增加的趋势,这与养殖活动中排放的残余饵料和养殖排泄物等有关.与养殖作业期相比,类腐殖质荧光峰在养殖间歇期溶解性有机质中贡献相对较大,可能与养殖池沉积物的扰动释放有关.
  • 加载中
  • [1] 吴丰昌, 王立英, 黎文, 等. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 2008, 20(1):1-12.

    WU F C, WANG L Y, LI W, et al. Natural organic matter and its significance in terrestrial surface environment[J]. Journal of Lake Sciences, 2008, 20(1):1-12(in Chinese).

    [2] HONG H S, WU J Y, SHANG S L, et al. Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China[J]. Marine Chemistry, 2005, 97(1-2):78-89.
    [3] WANG Y, ZHANG D, SHEN Z Y, et al. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary[J]. Chemosphere, 2014, 95:353-362.
    [4] 韩兰芳, 孙可, 康明洁, 等. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014, 33(11):1811-1820.

    HAN L F, SUN K, KANG M J, et al. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J].Environmental Chemistry, 2014, 33(11):1811-1820(in Chinese).

    [5] LEENHEER J A, CROUE J P. Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1):18A-26A.
    [6] LEE E, SHON H K, CHO J. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites[J]. Journal of Hazardous Materials, 2014, 276:1-9.
    [7] VILLACORTE L O, EKOWATI Y, NEU T R, et al. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae[J]. Water Research, 2015, 73:216-230.
    [8] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1):38-48.
    [9] DE LAURENTⅡS E, BUOSO S, MAURINO V, et al. Optical and photochemical characterization of chromophoric dissolved organic matter from lakes in Terra Nova Bay, Antarctica. Evidence of considerable photoreactivity in an extreme environment[J]. Environmental Science & Technology, 2013, 47(24):14089-14098.
    [10] BOYLE E S, GUERRIERO N, THIALLET A, et al. Optical properties of humic substances and CDOM:Relation to structure[J]. Environmental Science & Technology, 2009, 43(7):2262-2268.
    [11] AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel electrochemical approach to assess the redox properties of humic substances[J]. Environmental Science & Technology, 2010, 44(1):87-93.
    [12] CORY R M, KAPLAN L A. Biological lability of streamwater fluorescent dissolved organic matter[J]. Limnology and Oceanography, 2012, 57(5):1347-1360.
    [13] VIONE D, MINELLA M, MAURINO V, et al. Indirect photochemistry in sunlit surface waters:Photoinduced production of reactive transient species[J]. Chemistry-A European Journal, 2014, 20(34):10590-10606.
    [14] VIONE D, FALLETTI G, MAURINO V, et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J]. Environmental Science & Technology, 2006, 40(12):3775-3781.
    [15] 刘芃岩, 路佳良, 孙佳惠, 等. 多溴联苯醚(PBDEs)光降解研究现状[J]. 环境化学, 2015, 34(2):270-278.

    LIU P Y, LU J L, SUN J H, et al. Research status of photodegradation of polybromin-ated diphenyl ethers (PBDES)[J]. Environmental Chemistry, 2015,34(2):270-278(in Chinese).

    [16] PETERSON B M, MCNALLY A M, CORY R M, et al. Spatial and temporal distribution of singlet oxygen in Lake Superior[J]. Environmental Science & Technology, 2012, 46(13):7222-7228.
    [17] TIMKO S A, ROMERA-CASTILLO C, JAFFE R, et al. Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA[J]. Environmental Science:Processes & Impacts, 2014, 16(4):866-878.
    [18] FAO. The state of world fisheries and aquaculture 2012[M]. Rome:FAO, 2012.
    [19] WU H, PENG R H, YANG Y, et al. Mariculture pond influence on mangrove areas in south China:Significantly larger nitrogen and phosphorus loadings from sediment wash-out than from tidal water exchange[J]. Aquaculture, 2014, (426-427):204-212.
    [20] WANG M, ZHANG J H, TU Z G, et al. Maintenance of estuarine water quality by mangroves occurs during flood periods:A case study of a subtropical mangrove wetland[J]. Marine Pollution Bulletin, 2010, 60(11):2154-2160.
    [21] TOVAR A, MORENO C, MÁNUEL-VEZ M P, et al. Environmental implications of intensive marine aquaculture in earthen ponds[J]. Marine Pollution Bulletin, 2000, 40(11):981-988.
    [22] AL HOUSARI F, VIONE D, CHIRON S, et al. Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes[J]. Photochemical & Photobiological Sciences, 2010, 9(1):78-86.
    [23] 国家质量监督检验检疫总局. 中国国家标准化管理委员会. GB17378.4-2007海洋监测规范第4部分:海水分析[S]. 北京:中国标准出版社, 2007. AQSIQ, SAC. GB17378.4-2007

    The specification for marine monitoring. Part 4:Seawater analysis[S]. Beijing:Standards Press of China,2007(in Chinese).

    [24] FUENTES M, GONZ LEZ-GAITANO G, GARCA-MINA J M. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts[J]. Organic Geochemistry, 2006, 37(12):1949-1959.
    [25] ZHANG Y L, YIN Y, LIU X H, et al. Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China. Organic Geochemistry[J]. 2011, 42(5):510-519.
    [26] ZHANG Y L, VAN DIJK M A, LIU M L, et al. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes:Field and experimental evidence[J]. Water Research, 2009, 43(18):4685-4697.
    [27] ZHANG Y L, YIN Y, FENG L Q, et al. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis[J]. Water Research, 2011, 45(16):5110-5122.
    [28] LAWAETZ A J, STEDMON C A. Fluorescence intensity calibration using the raman scatter peak of water[J]. Applied Spectroscopy, 2009, 63(8):936-940.
    [29] BAKER A. Thermal fluorescence quenching properties of dissolved organic matter[J]. Water Research, 2005, 39(18):4405-4412.
    [30] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710.
    [31] ZHANG L, WANG S R, ZHAO H C, et al. Using multiple combined analytical techniques to characterize water extractable organic nitrogen from Lake Erhai sediment[J]. Science of the Total Environment, 2016, 542:344-353.
    [32] TEDETTI M, CUET P, GUIGUE C, et al. Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy[J]. Science of The Total Environment, 2011, 409(11):2198-2210.
    [33] HE W, JUNG H, LEE J H, et al. Differences in spectroscopic characteristics between dissolved and particulate organic matters in sediments:Insight into distribution behavior of sediment organic matter[J]. Science of The Total Environment, 2016, 547:1-8.
    [34] PAGE S E, LOGAN J R, CORY R M, et al. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters[J]. Environmental Science:Processes & Impacts, 2014, 16(4):807-822.
    [35] QIAN J G, MOPPER K, KIEBER D J. Photochemical production of the hydroxyl radical in Antarctic waters[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2001, 48(3):741-759.
    [36] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为[J]. 中国科学:化学, 2010, 40(2):124-135.

    GE L K, Zhang S Y, XIE Q, et al. Progress in studies on aqueous environmental photochemical behavior of antibiotics[J]. Scientia Sinica Chimica, 2010, 40(2):124-135(in Chinese).

    [37] CAVANI L, HALLADJA S, TER HALLE A, et al. Relationship between photosensitizing and emission properties of peat humic acid fractions obtained by tangential ultrafiltration[J]. Environmental Science & Technology, 2009, 43(12):4348-4354.
    [38] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4):325-346.
  • 加载中
计量
  • 文章访问数:  1304
  • HTML全文浏览数:  1216
  • PDF下载数:  565
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-29
  • 刊出日期:  2016-08-15
刘远, 乔显亮, 陈一波, 陈景文. 海水养殖区排水中溶解性有机质的光化学研究[J]. 环境化学, 2016, 35(8): 1611-1618. doi: 10.7524/j.issn.0254-6108.2016.08.2015122901
引用本文: 刘远, 乔显亮, 陈一波, 陈景文. 海水养殖区排水中溶解性有机质的光化学研究[J]. 环境化学, 2016, 35(8): 1611-1618. doi: 10.7524/j.issn.0254-6108.2016.08.2015122901
LIU Yuan, QIAO Xianliang, CHEN Yibo, CHEN Jingwen. Photochemical activity of dissolved organic matter in the effluent from mariculture areas[J]. Environmental Chemistry, 2016, 35(8): 1611-1618. doi: 10.7524/j.issn.0254-6108.2016.08.2015122901
Citation: LIU Yuan, QIAO Xianliang, CHEN Yibo, CHEN Jingwen. Photochemical activity of dissolved organic matter in the effluent from mariculture areas[J]. Environmental Chemistry, 2016, 35(8): 1611-1618. doi: 10.7524/j.issn.0254-6108.2016.08.2015122901

海水养殖区排水中溶解性有机质的光化学研究

  • 1. 大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连, 116024
基金项目:

973项目(2013CB430403)和国家自然科学基金(21277018)资助.

摘要: 本研究通过光化学实验考察了莱州湾海水养殖区排水中溶解性有机质的光化学性质,并分析了排水中溶解性有机质的紫外可见吸收光谱和荧光光谱随养殖时期的变化.结果表明养殖排水中溶解性有机质光致生成活性物种如3DOM*、1O2和·OH的速率分别处于10-9(mol·L-1·s-1)、10-9(mol·L-1·s-1)和10-13(mol·L-1·s-1)的量级,并随养殖时期表现出一定的规律性,即退潮阶段大于涨潮阶段,养殖间歇期大于养殖作业期.光谱分析表明,类蛋白荧光峰是养殖作业期内的优势荧光峰,其在溶解性有机质组成中的贡献随养殖排水累积汇入呈逐渐增加的趋势,这与养殖活动中排放的残余饵料和养殖排泄物等有关.与养殖作业期相比,类腐殖质荧光峰在养殖间歇期溶解性有机质中贡献相对较大,可能与养殖池沉积物的扰动释放有关.

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回