[1] PERENCEVICH E N, WONG M T, HARRIS A D.National and regional assessment of the antibacterial soap market:A step toward determining the impact of prevalent antibacterial soaps[J]. American Journal of Infection Control, 2001, 29(5):281-283.
[2] ZHAO J L, ZHANG Q Q, CHEN F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools:Implications for controlling of urban domestic sewage discharge[J]. Water Research, 2013,47(1):395-405.
[3] United States Environmental Protection Agency. Estimating Exposure to Dioxin-Like Compounds[R]. Washington D C:Office of Water, Office of Science and Technology, 1994.
[4] MENOUTIS J, PARISI A I. Testing for dioxin and furan contamination in triclosan[J].Cosmetics and Toiletries, 2002, 117(10):75-78.
[5] LATCH D E, PACKER J L, ARNOLD W A, et al. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution[J]. Journal of Photochemistry and PhotobiologyA:Chemistry, 2003, 158(1):63-66.
[6] RULE K L, EBBETT V R, VIKESLAND P J. Formation of chloroform and chlorinated organics by free-chlorinemediated oxidation of triclosan[J]. Environmental Science & Technology,2005, 39(9):3176-3185.
[7] SON H S, KHIM J, ZOH K D. Degradation of triclosan in the combined reaction of Fe2+and UV-C:Comparison with the Fenton and photolytic reactions[J]. Environmental Progress & Sustainable Energy, 2010,29(4):415-420.
[8] KIM Y M, MURUGESAN K, SCHMIDT S, et al. Triclosan susceptibility and cometabolism A comparison for three aerobic pollutant-degrading bacteria[J]. Bioresource Technology, 2011, 102(3):2206-2212.
[9] BEHERA S K, OH S Y, PARK H S. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite:Effects of pH, ionic strength, and humic acid[J]. Journal of Hazardous Materials, 2010, 179(1):684-691.
[10] VLADIMIR I KOVALCHUK, JULIE L D'ITRI. Catalytic chemistry of chloro and chlorofluorocarbon dehalogenation:From macroscopic observation to molecular level understanding[J].Applied Catalysis A:General, 2004, 271:13-25.
[11] XIAC H,LIU Y,ZHOU S W,et al.The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions:A promising approach to practical use in wastewater[J].Journal of Hazardous materials,2009,169:1029-1033.
[12] YUAN G, KEANE M A. Role of base addition in the liquid-phase hydrodechlorination of 2, 4-dichlorophenol over Pd/Al2O3 and Pd/C[J].Journal of Catalysis,2004, 225(2):510-522.
[13] PANAGIOTOPOULOU P,KONDARIDES D I. Effect of morphologicalcharacteristics of TiO2-supported noble metal catalysts on theiractivity for the water-gas shift reaction[J].Journal of Catalysis,2004,225(2):327-336.
[14] WANG M,GUO D J,LI H L. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation[J].Journal ofSolid State Chemistry,2005,178(6):1996-2000.
[15] WOJCIESZAK R,GENET M J,ELOY P,et al. Determination of thesize of supported Pd nanoparticles by X-ray photoelectronspectroscopy. Comparison with X-ray diffraction,transmissionelectron microscopy,and H2 chemisorption methods[J].Journal of Physical Chemistry C,2010,114(39):16677-16684.
[16] YUAN G,KEANE M A.Liquid phase catalytic hydrodechlorinationof 2,4-dichlorophenol over carbon supported palladium:Anevaluation of transport limitations[J].Chemical Engineering Science,2003,58(2):257-267.
[17] 刘冬,周娟,万玉秋,等.碳纳米管负载Pd基催化剂对水中2,4-二氯酚的催化加氢脱氯[J].环境化学,2013,32(3):351-357. LIU D, ZHOU J,WAN Y Q.Catalytic hydrodechlorination of 2,4-dichlorophenolover carbon nanotube supported Pd catalysts[J].Environmental Chemistry,2013,32(3):351-357(in Chinese).
[18] ILINITCH O M, CUPERUS F P, NOSOVA L V, et al. Catalytic membrane in reduction of aqueous nitrates:Operational principles and catalytic performance[J]. Catalysis Today, 2000, 56:137-145.
[19] YUAN G, KEANE M A. Aqueous-phase hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3:Reaction under controlled pH[J].Industrial and Engineering Chemistry Research, 2007,46(3):705-715.
[20] GUMY D,GIRADO S A,RENGIFO J, et al. Effect of suspended TiO2 physicochemical characteristics on benzene derivatives photocatalytic degradation[J].Applied Catalysis B:Environmental, 2008,78(1-2):19-29.
[21] KOSMULSKI M.pH-dependent surface charging and points of zero charge. Ⅳ. Update and new approach[J].Journal of Colloid Interface Science, 2009, 337(2):439-448.
[22] MOGYORÓSI K,BALÁZA N,SRANKÓ D F, et al. The effect of particle shape on the activity of nanocrystalline TiO2photocatalysts in phenol decomposition. Part 3:The importance of surface quality[J]. Applied Catalysis B:Environmental, 2010, 96(3-4):577-585.