过渡金属Fe、Co、Ni介孔分子筛MCM-41催化剂的制备及其氧化性能

范钧朝, 陈爱因, 陈诗, 韩小江, 孙红文. 过渡金属Fe、Co、Ni介孔分子筛MCM-41催化剂的制备及其氧化性能[J]. 环境化学, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201
引用本文: 范钧朝, 陈爱因, 陈诗, 韩小江, 孙红文. 过渡金属Fe、Co、Ni介孔分子筛MCM-41催化剂的制备及其氧化性能[J]. 环境化学, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201
FAN Junzhao, CHEN Aiyin, CHEN Shi, HAN Xiaojiang, SUN Hongwen. Synthesis of Fe, Co, Ni loaded MCM-41 mesoporous molecular sieves and their catalytic oxidation performance[J]. Environmental Chemistry, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201
Citation: FAN Junzhao, CHEN Aiyin, CHEN Shi, HAN Xiaojiang, SUN Hongwen. Synthesis of Fe, Co, Ni loaded MCM-41 mesoporous molecular sieves and their catalytic oxidation performance[J]. Environmental Chemistry, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201

过渡金属Fe、Co、Ni介孔分子筛MCM-41催化剂的制备及其氧化性能

  • 基金项目:

    国家大学生创新性实验计划(201510055101)和中央高校基本科研业务费专项基金资助.

Synthesis of Fe, Co, Ni loaded MCM-41 mesoporous molecular sieves and their catalytic oxidation performance

  • Fund Project: Supported by the National Undergraduate Innovative Test Program(201510055101)and the Fundamental Research Funds for the Central Universities
  • 摘要: 本研究用直接法和后处理法合成了不同过渡金属(Fe、Co、Ni)负载的介孔分子筛载体材料MCM-41,并利用Al对分子筛进行了改性,制备了Fe/Al复合催化剂,对上述材料进行了表征.研究了这些非均相催化剂对染料活性艳蓝KN-R的催化氧化脱色,分别研究了催化剂制备方法、过渡金属种类及负载量对KN-R脱色效率的影响,并考察了所制得催化剂的稳定性和重复利用性.结果表明,直接法合成的催化剂具有较高的催化性能及较低的金属溶出量,负载铁(Ⅱ)的催化剂对染料的催化降解性能要远高于钴(Ⅱ)和镍(Ⅱ)负载型催化剂,催化氧化活性随金属负载量的提高而显著升高.Al改性进一步提高了催化剂的活性,在pH=2.5,氧化剂H2O2投加剂量为50.0 mmol·L-1,催化剂剂量为4.0 g·L-1的条件下,反应30 min,对初始浓度为250 mg·L-1的KN-R染料的脱色率均可达95%以上,矿化率达60%以上.当Al/Si为0.21,Fe负载量为23.6 mg·g-1时,在10 min内可将250 mg·L-1的KN-R完全脱色.经过3次循环使用后,上述催化剂仍能表现出良好的性能,但进一步循环使用,催化活性下降.
  • 加载中
  • [1] LIU Y M, HUA L, LI S Q. Photocatalytic degradation of reactive brilliant blue KN-R by TiO2/UV process[J]. Desalination, 2010, 258(1/3):48-53
    [2] WANG H, YANG Y, LI X J. Removal of chemical organics and chromaticity from printing and dyeing wastewater using nanofiltration membrane[J]. Asian Journal of Chemistry, 2014, 26(8):2318-2320
    [3] CHEN Z, ZHENG X, CHEN R Y, et al. Fenton reagent generated in electrolysis cell and its usage in degradation and decolorization of dyes[J]. Chemical Research in Chinese Universities, 2002, 18(1):34-37
    [4] 戴日成,张统,郭茜,等.印染废水水质特征及处理技术综述[J].给水排水,2000,26(10):33-37

    DAI R C, ZHANG T, GUO Q, et al. Summary of printing-dyeing wastewater treatment technology[J].Water & Wastewater Engineering, 2000,26(10):33-37(in Chinese).

    [5] HERRERA F, KIWI J, LOPEZ A, et al. Photochemical decoloration of Remazol Brilliant Blue and Uniblue A in the presence of Fe3+ and H2O2[J]. Environmental Science & Technology, 1999, 33(18):3145-3151.
    [6] CORMA A. From microporous tomesoporous molecular sieve materials and their use in catalysis[J]. Chemical Reviews, 1997, 97:2373-2379.
    [7] KOZHEVINIKOV I V, SIMEMA A, JANSEN R J, et al. New acid catalyst comprising heteropoly acid on mesoporous molecular sieves MCM-41[J]. Catalysis Letters, 1995, 30(1-4):241-252.
    [8] TANG Q, XU H, ZHENG Y Y, et al. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves[J].Applied Catalysis A-General, 2012, 413:36-42.
    [9] NARENDRA K, EWELINA L, PAIVI M A, et al. Synthesis and characterization of solid base mesoporous and microporous catalysts:Influence of the support,structure and type of base metal[J]. Microporous and Mesoporous Materials, 2012, 152:71-77.
    [10] FAN W B, DUAN R G, YOKOI T, et al. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species[J]. Journal of the American Chemical Society, 2008, 130(31):10150-10164.
    [11] FAN F T, FENG Z C, LI C. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials[J]. Accounts of Chemical Research, 2010, 43(3):378-387.
    [12] KONG L B, CAI J J, SUN L L, et al. Co(OH)2/SBA-15 molecular sieves nanocomposite materials for electrochemical capacitors[J].Materials Chemistry and Physics, 2010, 122(2-3):368-373.
    [13] KILOS B, TUEL A, ZIOLEK M, et al. New Nb-containing SBA-3 mesoporous materials-Synthesis, characteristics and catalytic activity in gas and liquid phase oxidation (A)//Catalysis Today ed,5th International Symposium on Group Five Compounds[C]. Catalysis Today, 2006, 118(3-4):416-424.
    [14] KHALI K M S, KHALAF M M, MOHRAN H S, et al. Direct formation of iron oxide/MCM-41 nanocomposites via single or mixed n-alkyltrimethylammonium bromide surfactants[J]. Journal of Colloid and Interface Science, 2012, 368:56-63.
    [15] HSU C H, WANG Y L, KO A N. Liquid phase hydrogenation of t,t,c-1,5,9-cyclododecatriene over Ni/MCM-41 and Ni/SiO2catalysts[J]. Journal of the Chinese Chemical Society, 2009, 56:908-915.
    [16] JIANG T S, ZHAO Q, CHEN K M, et al. Synthesis and characterization of Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal obtained by using microwave irradiation method[J]. Applied Surface Science, 2008, 254(9):2575-2580.
    [17] WONG S T, LEE J F, CHENG S, et al. In-situ study of MCM-41 supported iron oxide catalyst by XANES & EXAFS[J].Applied Catalysis A-General, 2000, 198:115-126.
    [18] 徐岩. Al-MCM-41分子筛催化双环戊二烯异构及聚合反应研究[D].天津:天津大学化工学院博士学位论文,2012 XU Y. Isomerization and oligomerization of dicy-clopentadiene using Al-MCM-41 molecularSieves[D]. Tianjin:Chemical Engineering School of Tianjin University,2012(in Chinese).
    [19] KOCK H, RESCHETILOWASKI W. Is the catalytic activity of Al-MCM-41 sufficient for hydrocarbon cracking[J]. Microporous and Mesoporous Materials, 1998, 25(1-3):127-129
    [20] SHEN S C, KAWI S. Understanding of the effect of Al substitution on the hydrothermal stability of MCM-41[J]. Journal of Physical Chemistry B, 1999, 103(42):8870-8876.
    [21] WANG Y, NOGUCHI M, TAKAHASHI Y, et al. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts[J]. Catalysis Today, 2001, 68(1-3):3-9.
    [22] 龙英才,董维阳,许太明,等.改性MCM-41吸附等温线、IR以及29Si MAS NMR的研究[J].科学通报,1997, 42(9):938-940

    LONG Y C, DONG W Y, XU T M, et al. Adsorption isotherm, IR and 29 Si MAS NMR of Modified MCM-41[J]. Chinese Science Bulletin, 1997, 42(9):938-940(in Chinese).

    [23] LIU B Y,REN Y Q,DUAN Q Q,et al. Facile synthesis of mesoporous aluminosilicates constructed with crystalline microporous frameworks[J]. Applied Surface Science, 2013, 279:55-61.
    [24] ANIPSITAKIS G P, DIONYSIOU D D. Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B-Environmental, 2004,54(3):155-163.
    [25] BALDRIAN P, CAJTHAML T,MERHAUTOVA V, et al. Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates[J]. Applied Catalysis B-Environmental, 2005, 59(3-4):267-274.
    [26] PARANGI T F, PATEL R M, CHUDASAMA U V. Synthesis and characterization of mesoporous Si-MCM-41 materials and their application as solid acid catalysts in some esterification reactions[J]. Bulletin of Materials Science, 2014, 37(3):609-615.
    [27] KIM J M, KWAK J H, JUN S, et al. Ion exchange and thermal stability of MCM-41[J]. Journal of Physical Chemistry C, 1995, 99:16742-16746.
    [28] MAHMOUDI J, LOTFOLLAHI M N, ASL A H. Comparison of synthesized H-Al-MCM-41 with different Si/Al ratios for benzene reduction in gasoline with propylene[J]. Journal of Industrial and Engineering Chemistry, 2015, 24:113-120.
    [29] KWAK K Y, KIM M S, LEE D W, et al. Synthesis of cyclopentadienetrimer (tricyclopentadiene) over zeolites and Al-MCM-41:The effects of pore size and acidity[J]. Fuel, 2014, 137:230-236.
  • 加载中
计量
  • 文章访问数:  1804
  • HTML全文浏览数:  1735
  • PDF下载数:  678
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-10-22
  • 刊出日期:  2016-06-15
范钧朝, 陈爱因, 陈诗, 韩小江, 孙红文. 过渡金属Fe、Co、Ni介孔分子筛MCM-41催化剂的制备及其氧化性能[J]. 环境化学, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201
引用本文: 范钧朝, 陈爱因, 陈诗, 韩小江, 孙红文. 过渡金属Fe、Co、Ni介孔分子筛MCM-41催化剂的制备及其氧化性能[J]. 环境化学, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201
FAN Junzhao, CHEN Aiyin, CHEN Shi, HAN Xiaojiang, SUN Hongwen. Synthesis of Fe, Co, Ni loaded MCM-41 mesoporous molecular sieves and their catalytic oxidation performance[J]. Environmental Chemistry, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201
Citation: FAN Junzhao, CHEN Aiyin, CHEN Shi, HAN Xiaojiang, SUN Hongwen. Synthesis of Fe, Co, Ni loaded MCM-41 mesoporous molecular sieves and their catalytic oxidation performance[J]. Environmental Chemistry, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201

过渡金属Fe、Co、Ni介孔分子筛MCM-41催化剂的制备及其氧化性能

  • 1.  南开大学环境科学与工程学院,教育部环境污染过程与基准重点实验室, 天津, 300071;
  • 2.  建设部水处理新技术产业化基地, 天津, 300060
基金项目:

国家大学生创新性实验计划(201510055101)和中央高校基本科研业务费专项基金资助.

摘要: 本研究用直接法和后处理法合成了不同过渡金属(Fe、Co、Ni)负载的介孔分子筛载体材料MCM-41,并利用Al对分子筛进行了改性,制备了Fe/Al复合催化剂,对上述材料进行了表征.研究了这些非均相催化剂对染料活性艳蓝KN-R的催化氧化脱色,分别研究了催化剂制备方法、过渡金属种类及负载量对KN-R脱色效率的影响,并考察了所制得催化剂的稳定性和重复利用性.结果表明,直接法合成的催化剂具有较高的催化性能及较低的金属溶出量,负载铁(Ⅱ)的催化剂对染料的催化降解性能要远高于钴(Ⅱ)和镍(Ⅱ)负载型催化剂,催化氧化活性随金属负载量的提高而显著升高.Al改性进一步提高了催化剂的活性,在pH=2.5,氧化剂H2O2投加剂量为50.0 mmol·L-1,催化剂剂量为4.0 g·L-1的条件下,反应30 min,对初始浓度为250 mg·L-1的KN-R染料的脱色率均可达95%以上,矿化率达60%以上.当Al/Si为0.21,Fe负载量为23.6 mg·g-1时,在10 min内可将250 mg·L-1的KN-R完全脱色.经过3次循环使用后,上述催化剂仍能表现出良好的性能,但进一步循环使用,催化活性下降.

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回