[1] |
LIU Y M, HUA L, LI S Q. Photocatalytic degradation of reactive brilliant blue KN-R by TiO2/UV process[J]. Desalination, 2010, 258(1/3):48-53
|
[2] |
WANG H, YANG Y, LI X J. Removal of chemical organics and chromaticity from printing and dyeing wastewater using nanofiltration membrane[J]. Asian Journal of Chemistry, 2014, 26(8):2318-2320
|
[3] |
CHEN Z, ZHENG X, CHEN R Y, et al. Fenton reagent generated in electrolysis cell and its usage in degradation and decolorization of dyes[J]. Chemical Research in Chinese Universities, 2002, 18(1):34-37
|
[4] |
戴日成,张统,郭茜,等.印染废水水质特征及处理技术综述[J].给水排水,2000,26(10):33-37
DAI R C, ZHANG T, GUO Q, et al. Summary of printing-dyeing wastewater treatment technology[J].Water & Wastewater Engineering, 2000,26(10):33-37(in Chinese).
|
[5] |
HERRERA F, KIWI J, LOPEZ A, et al. Photochemical decoloration of Remazol Brilliant Blue and Uniblue A in the presence of Fe3+ and H2O2[J]. Environmental Science & Technology, 1999, 33(18):3145-3151.
|
[6] |
CORMA A. From microporous tomesoporous molecular sieve materials and their use in catalysis[J]. Chemical Reviews, 1997, 97:2373-2379.
|
[7] |
KOZHEVINIKOV I V, SIMEMA A, JANSEN R J, et al. New acid catalyst comprising heteropoly acid on mesoporous molecular sieves MCM-41[J]. Catalysis Letters, 1995, 30(1-4):241-252.
|
[8] |
TANG Q, XU H, ZHENG Y Y, et al. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves[J].Applied Catalysis A-General, 2012, 413:36-42.
|
[9] |
NARENDRA K, EWELINA L, PAIVI M A, et al. Synthesis and characterization of solid base mesoporous and microporous catalysts:Influence of the support,structure and type of base metal[J]. Microporous and Mesoporous Materials, 2012, 152:71-77.
|
[10] |
FAN W B, DUAN R G, YOKOI T, et al. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species[J]. Journal of the American Chemical Society, 2008, 130(31):10150-10164.
|
[11] |
FAN F T, FENG Z C, LI C. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials[J]. Accounts of Chemical Research, 2010, 43(3):378-387.
|
[12] |
KONG L B, CAI J J, SUN L L, et al. Co(OH)2/SBA-15 molecular sieves nanocomposite materials for electrochemical capacitors[J].Materials Chemistry and Physics, 2010, 122(2-3):368-373.
|
[13] |
KILOS B, TUEL A, ZIOLEK M, et al. New Nb-containing SBA-3 mesoporous materials-Synthesis, characteristics and catalytic activity in gas and liquid phase oxidation (A)//Catalysis Today ed,5th International Symposium on Group Five Compounds[C]. Catalysis Today, 2006, 118(3-4):416-424.
|
[14] |
KHALI K M S, KHALAF M M, MOHRAN H S, et al. Direct formation of iron oxide/MCM-41 nanocomposites via single or mixed n-alkyltrimethylammonium bromide surfactants[J]. Journal of Colloid and Interface Science, 2012, 368:56-63.
|
[15] |
HSU C H, WANG Y L, KO A N. Liquid phase hydrogenation of t,t,c-1,5,9-cyclododecatriene over Ni/MCM-41 and Ni/SiO2catalysts[J]. Journal of the Chinese Chemical Society, 2009, 56:908-915.
|
[16] |
JIANG T S, ZHAO Q, CHEN K M, et al. Synthesis and characterization of Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal obtained by using microwave irradiation method[J]. Applied Surface Science, 2008, 254(9):2575-2580.
|
[17] |
WONG S T, LEE J F, CHENG S, et al. In-situ study of MCM-41 supported iron oxide catalyst by XANES & EXAFS[J].Applied Catalysis A-General, 2000, 198:115-126.
|
[18] |
徐岩. Al-MCM-41分子筛催化双环戊二烯异构及聚合反应研究[D].天津:天津大学化工学院博士学位论文,2012 XU Y. Isomerization and oligomerization of dicy-clopentadiene using Al-MCM-41 molecularSieves[D]. Tianjin:Chemical Engineering School of Tianjin University,2012(in Chinese).
|
[19] |
KOCK H, RESCHETILOWASKI W. Is the catalytic activity of Al-MCM-41 sufficient for hydrocarbon cracking[J]. Microporous and Mesoporous Materials, 1998, 25(1-3):127-129
|
[20] |
SHEN S C, KAWI S. Understanding of the effect of Al substitution on the hydrothermal stability of MCM-41[J]. Journal of Physical Chemistry B, 1999, 103(42):8870-8876.
|
[21] |
WANG Y, NOGUCHI M, TAKAHASHI Y, et al. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts[J]. Catalysis Today, 2001, 68(1-3):3-9.
|
[22] |
龙英才,董维阳,许太明,等.改性MCM-41吸附等温线、IR以及29Si MAS NMR的研究[J].科学通报,1997, 42(9):938-940
LONG Y C, DONG W Y, XU T M, et al. Adsorption isotherm, IR and 29 Si MAS NMR of Modified MCM-41[J]. Chinese Science Bulletin, 1997, 42(9):938-940(in Chinese).
|
[23] |
LIU B Y,REN Y Q,DUAN Q Q,et al. Facile synthesis of mesoporous aluminosilicates constructed with crystalline microporous frameworks[J]. Applied Surface Science, 2013, 279:55-61.
|
[24] |
ANIPSITAKIS G P, DIONYSIOU D D. Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B-Environmental, 2004,54(3):155-163.
|
[25] |
BALDRIAN P, CAJTHAML T,MERHAUTOVA V, et al. Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates[J]. Applied Catalysis B-Environmental, 2005, 59(3-4):267-274.
|
[26] |
PARANGI T F, PATEL R M, CHUDASAMA U V. Synthesis and characterization of mesoporous Si-MCM-41 materials and their application as solid acid catalysts in some esterification reactions[J]. Bulletin of Materials Science, 2014, 37(3):609-615.
|
[27] |
KIM J M, KWAK J H, JUN S, et al. Ion exchange and thermal stability of MCM-41[J]. Journal of Physical Chemistry C, 1995, 99:16742-16746.
|
[28] |
MAHMOUDI J, LOTFOLLAHI M N, ASL A H. Comparison of synthesized H-Al-MCM-41 with different Si/Al ratios for benzene reduction in gasoline with propylene[J]. Journal of Industrial and Engineering Chemistry, 2015, 24:113-120.
|
[29] |
KWAK K Y, KIM M S, LEE D W, et al. Synthesis of cyclopentadienetrimer (tricyclopentadiene) over zeolites and Al-MCM-41:The effects of pore size and acidity[J]. Fuel, 2014, 137:230-236.
|