铝-8-羟基喹啉配合物静态结构和动态水交换的密度泛函理论研究

金晶, 董绍楠, 侯晓霞, 张婧, 毕树平. 铝-8-羟基喹啉配合物静态结构和动态水交换的密度泛函理论研究[J]. 环境化学, 2016, 35(6): 1125-1133. doi: 10.7524/j.issn.0254-6108.2016.06.2015100601
引用本文: 金晶, 董绍楠, 侯晓霞, 张婧, 毕树平. 铝-8-羟基喹啉配合物静态结构和动态水交换的密度泛函理论研究[J]. 环境化学, 2016, 35(6): 1125-1133. doi: 10.7524/j.issn.0254-6108.2016.06.2015100601
JIN Jing, DONG Shaonan, HOU Xiaoxia, ZHANG Jing, BI Shuping. Density functional theory studies on the static structures and water exchange reaction of aluminum-8-hydroxyquinoline complexes[J]. Environmental Chemistry, 2016, 35(6): 1125-1133. doi: 10.7524/j.issn.0254-6108.2016.06.2015100601
Citation: JIN Jing, DONG Shaonan, HOU Xiaoxia, ZHANG Jing, BI Shuping. Density functional theory studies on the static structures and water exchange reaction of aluminum-8-hydroxyquinoline complexes[J]. Environmental Chemistry, 2016, 35(6): 1125-1133. doi: 10.7524/j.issn.0254-6108.2016.06.2015100601

铝-8-羟基喹啉配合物静态结构和动态水交换的密度泛函理论研究

  • 基金项目:

    国家自然科学基金(21177054)资助.

Density functional theory studies on the static structures and water exchange reaction of aluminum-8-hydroxyquinoline complexes

  • Fund Project: Supported by the National Natural Science Foundation of China(21177054).
  • 摘要: 采用密度泛函理论(DFT)量子化学计算方法对铝-8-羟基喹啉配合物(Al-8-Hq)的静态结构以及水交换反应进行了研究,系统地开展了以下工作:(1)采用GP-PCM(气相模型并考虑本体溶剂效应)在B3LYP 6-311+G(d,p)水平优化了Al-8-Hq溶液中可能存在的8种构型,获得了相应的静态结构参数、NPA电荷和能量;(2)采用GIAO方法在HF 6-311+G(d,p)水平下计算了1:3配合物的27Al NMR化学位移,结果表明采用HF的GP-PCM模型化学位移计算值与实验值一致;(3)通过模拟1:1/1:2配合物8个不同位点的动态水交换反应,探讨了水交换反应机制并预测了水交换反应速率.本研究有助于从原子层面加深对Al-8-Hq配合物形态结构以及水交换反应动力学过程的理解和认识.
  • 加载中
  • [1] DRISCOLL C T, BAKER J P, BISOGNI J J, et al. Effect of aluminium speciation on fish in dilute acidified waters[J]. Nature, 1980, 284(5752):161-164.
    [2] 唐英,黄静,邹公伟,等. 三(8-羟基喹啉根)合铝(Ⅲ)配合物的萃取和高效液相色谱分析[J]. 无机化学学报, 2000, 16(4):637-640.

    TANG Y, HUANG J, ZOU G W, et al. Extraction and HPLC analysis of tri(8-quinolinolato)aluminum[J]. Chinese Journal of Inorganic Chemistry, 2000, 16(4):637-640(in Chinese).

    [3] ABDOLMOHAMMAD-ZADEH H, RAHIMPOUR E. CoFe2O4 nano-particles functionalized with 8-hydroxyquinoline for dispersive solid-phase micro-extraction and direct fluorometric monitoring of aluminum in human serum and water samples[J]. Analytica Chimica Acta, 2015, 881:54-64.
    [4] LU J S, TIAN J Y, GUO N, et al. Microemulsion extraction separation and determination of aluminium species by spectrofluorimetry[J]. Journal of Hazardous Materials, 2011, 185(2-3):1107-1114.
    [5] 王文东,杨宏伟,祝万鹏,等. 凝胶层析-荧光分光光度法联用分析饮用水中铝的形态[J]. 环境化学, 2007, 26(1):79-81.

    WANG W D, YANG H W, ZHU W P, et al. The union of gel-separation chromatogram and fluoremetry to determine different Al forms in drinking water[J]. Environmental Chemistry, 2007, 26(1):79-81(in Chinese).

    [6] RAMOS M L, JUSTINO L L G, SALVADOR A I N, et al. NMR, DFT and luminescence studies of the complexation of Al(Ⅲ) with 8-hydroxyquinoline-5-sulfonate[J]. Dalton Transactions, 2012, 41(40):12478-12489.
    [7] SEDLAK D L. Professor Einstein and the quantum mechanics[J]. Environmental Science & Technology, 2015, 49(5):2585-2585.
    [8] QIAN Z S, FENG H, YANG W J, et al. Supermolecule density functional calculations on the water exchange of aquated Al(Ⅲ) species in aqueous solution[J]. Chemical Communications, 2008, 33(33):3930-3932.
    [9] SHI W J, JIN X Y, DONG S N, et al. Theoretical investigation of the thermodynamic structures and kinetic water-exchange reactions of aqueous Al(Ⅲ)-salicylate complexes[J]. Geochimica et Cosmochimica Acta, 2013, 121(6):41-53.
    [10] JIN X Y, YAN Y, SHI W J, et al. Density functional theory studies on the structures and water-exchange reactions of aqueous Al(Ⅲ)-oxalate complexes[J]. Environmental Science & Technology, 2011, 45(23):10082-10090.
    [11] UTZ M, CHEN C Q, MORTON M, et al. Ligand exchange dynamics in aluminum tris-(quinoline-8-olate):A solution state NMR study[J]. Journal of the American Chemical Society, 2003, 125(5):1371-1375.
    [12] QIAN Z S, FENG H, HE L N, et al. Assessment of the accuracy of theoretical methods for calculating 27Al nuclear magnetic resonance shielding tensors of aquated aluminum species[J]. Journal of Physical Chemistry A, 2009, 113(17):5138-5143.
    [13] AMATI M, LELJ F. Are UV-Vis and luminescence spectra of Alq3[aluminum tris(8-hydroxy quinolinate)] δ-phase compatible with the presence of the fac-Alq3 isomer? A TD-DFT investigation[J]. Chemical Physics Letters, 2002, 358(1-2):144-150.
    [14] TAI C K, CHOU Y M, Wang B C. Investigation of photophysical properties of mer-tris(8-hydroxyquinolinato) aluminum (Ⅲ) and its derivatives:DFT and TD-DFT calculations[J]. Journal of Luminescence, 2011, 131(2):169-176.
    [15] BRINKMANN M, GADRET G, MUCCINI M, et al. Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(Ⅲ)[J]. Journal of the American Chemical Society, 2000, 122(21):5147-5157.
    [16] HALLS M D, SCHLEGEL H B. Molecular orbital study of the first excited state of the OLED material tris (8-hydroxyquinoline) aluminum(Ⅲ)[J]. Chemistry of Materials, 2001, 13(8):2632-2640.
    [17] AMATI M, LELJ F. Luminescent compounds fac-and mer-aluminum tris(quinolin-8-olate). A pure and hybrid density functional theory and time-dependent density functional theory investigation of their electronic and spectroscopic properties[J]. Journal of Physical Chemistry A, 2003, 107(14):2560-2569.
    [18] MUCCINI M, LOI M A, KENEVEY K, et al. Blue luminescence of facial tris(quinolin-8-olato) aluminum(Ⅲ) in solution, crystals, and thin films[J]. Advanced Materials, 2004, 16(11):861-864.
    [19] BAE C, LEE S, CHOI S Y, et al. Synthesis and characterization of monomeric, oligomeric, and polymeric aluminum 8-hydroxyquinolines[J]. Inorganic Chemistry, 2005, 44(22):7911-7917.
    [20] PIAO J C, KATORI S, IKENOUE T, et al. Formation of aluminum tris(8-hydroxyquinoline) solution in methanol and fabrication of thin films by ultrasonic spray-assisted vapor deposition[J]. Physica Status Solidi A, 2012, 209(7):1298-1301.
    [21] ROTZINGER F P. Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods[J]. Chemical Reviews, 2005, 105(105):2003-2037.[LM]
  • 加载中
计量
  • 文章访问数:  763
  • HTML全文浏览数:  692
  • PDF下载数:  281
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-10-06
  • 刊出日期:  2016-06-15
金晶, 董绍楠, 侯晓霞, 张婧, 毕树平. 铝-8-羟基喹啉配合物静态结构和动态水交换的密度泛函理论研究[J]. 环境化学, 2016, 35(6): 1125-1133. doi: 10.7524/j.issn.0254-6108.2016.06.2015100601
引用本文: 金晶, 董绍楠, 侯晓霞, 张婧, 毕树平. 铝-8-羟基喹啉配合物静态结构和动态水交换的密度泛函理论研究[J]. 环境化学, 2016, 35(6): 1125-1133. doi: 10.7524/j.issn.0254-6108.2016.06.2015100601
JIN Jing, DONG Shaonan, HOU Xiaoxia, ZHANG Jing, BI Shuping. Density functional theory studies on the static structures and water exchange reaction of aluminum-8-hydroxyquinoline complexes[J]. Environmental Chemistry, 2016, 35(6): 1125-1133. doi: 10.7524/j.issn.0254-6108.2016.06.2015100601
Citation: JIN Jing, DONG Shaonan, HOU Xiaoxia, ZHANG Jing, BI Shuping. Density functional theory studies on the static structures and water exchange reaction of aluminum-8-hydroxyquinoline complexes[J]. Environmental Chemistry, 2016, 35(6): 1125-1133. doi: 10.7524/j.issn.0254-6108.2016.06.2015100601

铝-8-羟基喹啉配合物静态结构和动态水交换的密度泛函理论研究

  • 1. 南京大学化学化工学院, 南京, 210023
基金项目:

国家自然科学基金(21177054)资助.

摘要: 采用密度泛函理论(DFT)量子化学计算方法对铝-8-羟基喹啉配合物(Al-8-Hq)的静态结构以及水交换反应进行了研究,系统地开展了以下工作:(1)采用GP-PCM(气相模型并考虑本体溶剂效应)在B3LYP 6-311+G(d,p)水平优化了Al-8-Hq溶液中可能存在的8种构型,获得了相应的静态结构参数、NPA电荷和能量;(2)采用GIAO方法在HF 6-311+G(d,p)水平下计算了1:3配合物的27Al NMR化学位移,结果表明采用HF的GP-PCM模型化学位移计算值与实验值一致;(3)通过模拟1:1/1:2配合物8个不同位点的动态水交换反应,探讨了水交换反应机制并预测了水交换反应速率.本研究有助于从原子层面加深对Al-8-Hq配合物形态结构以及水交换反应动力学过程的理解和认识.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回