生物炭对极性与非极性有机污染物的吸附机理

王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理[J]. 环境化学, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404
引用本文: 王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理[J]. 环境化学, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404
WANG Fei, SUN Hongwen. Sorption mechanisms of polar and apolar organic contaminants onto biochars[J]. Environmental Chemistry, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404
Citation: WANG Fei, SUN Hongwen. Sorption mechanisms of polar and apolar organic contaminants onto biochars[J]. Environmental Chemistry, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404

生物炭对极性与非极性有机污染物的吸附机理

  • 基金项目:

    973项目(2014CB441104)资助.

Sorption mechanisms of polar and apolar organic contaminants onto biochars

  • Fund Project: Supported by Ministry of Science and Technology of China(2014CB441104).
  • 摘要: 以玉米秸秆为原料,分别在200、400、600、700℃下制备了不同性质的生物炭,对其性质进行了表征.研究了极性物质普萘洛尔和非极性物质萘在生物炭上的吸附,并对不同物质的吸附机理进行了探讨.结果表明,随裂解温度的升高,生物炭芳香性增强,极性降低,比表面积增大.普萘洛尔和萘的吸附都随生物炭裂解温度的升高而增大,普萘洛尔的lgKoc由3.10(低平衡浓度3 mg·L-1)和2.88(高浓度10 mg·L-1)增加到3.89和3.67;萘的lgKoc由2.74(低平衡浓度3 mg·L-1)和2.65(高浓度15 mg·L-1)增加到4.59和4.05.疏水分配作用对萘在低温生物炭上的吸附起主要作用,而随裂解温度升高,表面吸附和孔填充所占贡献逐渐增强.除了以上机理,普萘洛尔还可通过静电吸引进行吸附,而且在BC200上,由于大量极性官能团的作用,有利于静电吸附,其对普萘洛尔的吸附显著大于对萘的吸附;而且存在分子的倾斜吸附或多分子层吸附,单位表面积的吸附量远远大于单分子层吸附预测值.而在高温生物炭上,由于萘的分子较小而憎水性较高有利于孔填充作用,其对萘的吸附大于对普萘洛尔的吸附.
  • 加载中
  • [1] LEHMANN J. A handful of carbon[J]. Nature, 2007, 447(7141):143-144.
    [2] CHINTALA R, SCHUMACHER T E, KUMAR S, et al.Molecular characterization of biochars and their influence on microbiological properties of soil[J]. Journal of Hazardous Materials, 2014, 279:244-256.
    [3] 王萌萌,周启星.生物炭的土壤环境效应及其机制研究[J]. 环境化学,2013,32(5):768-780.

    WANG M M, ZHOU Q X. Environmental effects and their mechnisms of biochar applied to soils[J]. Environment Chemistry,2013, 32(5):768-780(in Chinese)

    [4] WEN B, LI R, ZHANG S, et al. Immobilization of pentachlorophenol in soil using carbonaceous material amendments[J]. Environmental Pollution, 2009, 157(3):968-974.
    [5] CAO X, MA L, LIANG Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J].Environmental Science & Technology, 2011, 45(11):4884-4889.
    [6] WU W, YANG M, FENG Q, et al. Chemical characterization of rice straw-derived biochar for soil amendment[J]. Biomass & Bioenergy, 2012, 47:268-276.
    [7] QIU M, SUN K, JIN J, et al. Properties of the plant-and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene[J]. Scientific Reports, 2014, 4(5295):1-10.
    [8] LI H, QU R, LI C, et al. Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures[J]. Bioresource Technology, 2014, 163:193-198.
    [9] LATTTAO C, CAO X, MAO J, et al. Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars[J]. Environmental Science & Technology, 2014, 48(9):4790-4798.
    [10] ZHOU Z,SHI D, QIU Y, et al. Sorptive domains of pine chars as probed by benzene and nitrobenzene[J]. Environmental Pollution, 2010, 158(1):201-206.
    [11] DECHENE A, ROSENDAHL I, LABBS V, et al. Sorption of polar herbicides and herbicide metaboites by biochar-amended soil[J]. Chemosphere, 2014, 109:180-186.
    [12] CORADA-FERNANDEZ C, JIMENEZ-MARTINEZ J, CANDELA L, et al. Occurrence and spatial distribution of emerging contaminants in the unsaturated zone. Case study:Guadalete River basin (Cadiz, Spain)[J]. Chemosphere, 2015, 119:131-137.
    [13] KUTZNER S, SCHAFFER M, BORNICK H, et al. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations[J]. Water Research, 2014, 54:273-283.
    [14] ALDER A C, SCHAFFNER C, MAJEWSKY M, et al. Fate of beta-blocker human pharmaceuticals in surface water:Comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland[J]. Water Research, 2010, 44(3):936-948.
    [15] MAURER M, ESCHER B I, RICHLE P, et al. Elimination of beta-blockers in sewage treatment plants[J]. Water Research, 2007, 41(7):1614-1622.
    [16] ACS.SciFinder®(DB)[EB/OL].[2015-06-14].https://scifinder.cas.org/scifinder/.
    [17] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253.
    [18] YANG H, YAN R, CHEN H, et al.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86:1781-1788.
    [19] SUN K, JIN J, KEILUWEIT M, KLEBER M, et al. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars[J]. Bioresource Technology,2012, 118:120-127.
    [20] ZHANG P, SUN H, YU L,et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars:Impact of structural properties of biochars[J]. Journal of Hazardous Materials, 2013, 244-245:217-224.
    [21] YANG K, WU W, JING Q, et al. Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4-chloroaniline on multiwalled carbon nanotubes[J]. Environmental Science & Technology, 2010, 44(8):3021-3027.
    [22] CHEN B, ZHOU D, ZHU L, et al. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14):5137-5143.
    [23] SHAABAN A, SE S M, DIMIN M F, et al. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis[J].Journal of Analytical and Applied Pyrolysis, 2014, 107:31-39.
    [24] JI L, WAN Y, ZHENG S, et al.Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes:Implication for the relative importance of black carbon to soil sorption[J]. Environmental Science & Technology, 2011, 45(13):5580-5586.
    [25] LIAN F, SUN B, CHEN X, et al. Effect of humic acid (HA) on sulfonamide sorption by biochars[J]. Environmental Pollution, 2015, 204:306-312.
  • 加载中
计量
  • 文章访问数:  1388
  • HTML全文浏览数:  1292
  • PDF下载数:  798
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-24
  • 刊出日期:  2016-06-15
王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理[J]. 环境化学, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404
引用本文: 王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理[J]. 环境化学, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404
WANG Fei, SUN Hongwen. Sorption mechanisms of polar and apolar organic contaminants onto biochars[J]. Environmental Chemistry, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404
Citation: WANG Fei, SUN Hongwen. Sorption mechanisms of polar and apolar organic contaminants onto biochars[J]. Environmental Chemistry, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404

生物炭对极性与非极性有机污染物的吸附机理

  • 1. 南开大学环境科学与工程学院,环境污染过程与基准教育部重点实验室, 天津, 300071
基金项目:

973项目(2014CB441104)资助.

摘要: 以玉米秸秆为原料,分别在200、400、600、700℃下制备了不同性质的生物炭,对其性质进行了表征.研究了极性物质普萘洛尔和非极性物质萘在生物炭上的吸附,并对不同物质的吸附机理进行了探讨.结果表明,随裂解温度的升高,生物炭芳香性增强,极性降低,比表面积增大.普萘洛尔和萘的吸附都随生物炭裂解温度的升高而增大,普萘洛尔的lgKoc由3.10(低平衡浓度3 mg·L-1)和2.88(高浓度10 mg·L-1)增加到3.89和3.67;萘的lgKoc由2.74(低平衡浓度3 mg·L-1)和2.65(高浓度15 mg·L-1)增加到4.59和4.05.疏水分配作用对萘在低温生物炭上的吸附起主要作用,而随裂解温度升高,表面吸附和孔填充所占贡献逐渐增强.除了以上机理,普萘洛尔还可通过静电吸引进行吸附,而且在BC200上,由于大量极性官能团的作用,有利于静电吸附,其对普萘洛尔的吸附显著大于对萘的吸附;而且存在分子的倾斜吸附或多分子层吸附,单位表面积的吸附量远远大于单分子层吸附预测值.而在高温生物炭上,由于萘的分子较小而憎水性较高有利于孔填充作用,其对萘的吸附大于对普萘洛尔的吸附.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回