腐殖质氧化还原和电子转移特性研究进展

袁英, 何小松, 席北斗, 高如泰, 檀文炳, 崔东宇, 唐军. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019
引用本文: 袁英, 何小松, 席北斗, 高如泰, 檀文炳, 崔东宇, 唐军. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019
YUAN Ying, HE Xiaosong, XI Beidou, GAO Rutai, TAN Wenbing, CUI Dongyu, TANG Jun. Research progress on the redox and electron transfer capacity of humic substances[J]. Environmental Chemistry, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019
Citation: YUAN Ying, HE Xiaosong, XI Beidou, GAO Rutai, TAN Wenbing, CUI Dongyu, TANG Jun. Research progress on the redox and electron transfer capacity of humic substances[J]. Environmental Chemistry, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019

腐殖质氧化还原和电子转移特性研究进展

  • 基金项目:

    国家杰出青年科学基金项目(51325804)资助.

Research progress on the redox and electron transfer capacity of humic substances

  • Fund Project:
  • 摘要: 腐殖质在无氧和有氧条件下都具有一定的氧化还原能力,其氧化还原能力与氧化还原电势有关,而腐殖质的氧化还原电势受芳香度、取代基类型、取代位置等因素影响.除氧化还原能力外,腐殖质还能介导电子转移,其电子转移能力受腐殖质结构和所处环境两大因素影响.水体腐殖酸比土壤和沉积物腐殖酸具有相对较小的电子接受能力(EAC)和较大的提供电子能力(EDC);pH、温度、光照、氧气条件和微生物活动等因素均对腐殖质氧化能力和电子转移能力具有重要影响.腐殖质可以介导重金属和有机污染物的还原降解,不同重金属还原反应效率差异较大,其中Fe(Ⅲ)盐还原速率最高;有机污染物降解速率从大到小为六氯乙烷(HCE)> 四氯化碳> 三溴甲烷.目前在腐殖质氧化还原特性和电子转移能力研究中还存在诸多不足,需要广大学者做进一步探究.
  • 加载中
  • [1] 栾富波,谢丽,李俊,等. 腐殖酸的氧化还原行为及其研究进展[J].化学通报, 2008,(11):833-837
    [2] Scott D T,Knight D M,Blunt-Harris E,et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environ Sci Technol,1998,32(19):2984-2989
    [3] Pham A N,Rose A L,Waite T D. Kinetics of Cu(Ⅱ) reduction by natural organic matter[J]. J Phys Chem A,2012,116(25):6590-6599
    [4] Lovley D R,Coates J D,Blunt-Harris E,et al. Humic substances as electron acceptors for microbial respiration[J]. Nature,1996(382):445-448
    [5] Lovley D R,Blunt-Harris E L. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(Ⅲ) Reduction[J]. Appl Environ Microbiol,1999,65(9):4252-4254
    [6] Fulton J R,McKnight D M,Foreman C M,et al. Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake[J]. Aquat Sci,2004,66(1):27-46
    [7] Ritchie J D,Perdue E M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter[J]. Geochim Cosmochim Acta,2003,67(1):85-96
    [8] Struyk Z,Sposito G. Redox properties of standard humic acids[J]. Geoderma, 2001,102(3/4):329-346
    [9] Klapper L,McKnight D M,Fulton J R,et al. Fulvic acid oxidation state detection using fluorescence spectroscopy[J]. Environ Sci Technol,2002,36(14):3170-3175
    [10] Nopawan R,Nanny M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environ Sci Technol,2007,41(22):7844-7850
    [11] Uchimiya M,Stone A T. Reversible redox chemistry of quinines:Impact on biogeochemical cycles[J]. Chemosphere,2009,77(4):451-458
    [12] Fimmen R L,Cory R M,Chin Y P,et al. Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter[J]. Geochim Cosmochim Acta,2007,71(12):3003-3015
    [13] Chen J,Gu B H,Royer R A,et al. The roles of natural organic matter in chemical and microbial reduction of ferric iron[J]. Sci Total Environ,2003,307(1/3):167-178
    [14] 陈蕾,超峰,王郑,等. 天然有机质对环境污染物的转化过程的介导作用[J]. 生态环境学报,2013,22(7):1244-1249
    [15] Roden E E,Kappler A,Bauer I,et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances[J]. Nat Geosci,2010,3:417-421
    [16] Peretyazhko T,Sposito G. Reducing capacity of terrestrial humic acids[J]. Geoderma, 2006,137(1/2):140-146
    [17] Aeschbacher M,Sander M,Schwarzenbach R P. Novel electrochemical approach to assess the redox properties of humic substances[J]. Environ Sci Technol,2010,44(1):87-93
    [18] Baue I,Kappler A. Rates and extent of reduction of Fe(Ⅲ) compounds and O2 by humic substances[J]. Environ Sci Technol,2009,43(13):4902-4908
    [19] Visser S A. Oxidation-reduction potentials and capillary activities of humic acids[J]. Nature,1964,204:581-581
    [20] Aeschbacher M,Vergari D,Schwarzenbach R P,et al. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids[J]. Environ Sci Technol,2011,45(19):8385-8394
    [21] Klüpfel L. Redox characteristics of quinones in natural organic matter (NOM)[D]. Switzerland: Term paper FS 2009,Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich
    [22] Schwarzenbach R P,Gschwend P, Imboden D. Environmental organic chemistry[M]. New York: Wiley-Interscience, 2003:555-610
    [23] Reale S,Tullio A,Spreti N,et al. Mass spectrometry in the biosynthetic and structural investigation of lignins[J]. Mass Spectrom Rev,2004,23(2):87-126
    [24] Law A H,Threlfall D R,Whistance G R. Isoprenoid phenol and quinone precursors of ubiquinones and dihydroubiquinones [ubiquinones (H2)] in fungi[J]. Biochem J,1971,123(3):331-339
    [25] Gamage R,McQuillan A J,Peake B M. Ultraviolet-visible and electron paramagnetic resonance spectroelectrochemical studies of the reduction products of some anthraquinone sulphonates in aqueous solutions[J]. J Chem Soc,Faraday Trans,1991,87(22):3653-3660
    [26] Aeschbacher. Electrochemical redox characterization of humic substances[D]. Switzerland: ETH Zurich,2011
    [27] Benz M,Schink B,Brune A. Humic acid reduction by propionibacterium freudenreichii and other fermenting bacteria[J]. Appl Environ Microbiol,1998,64(11):4507-4512
    [28] Kappler A,Haderlein S B. Natural organic matter as reductant for chlorinated aliphatic pollutants[J]. Environ Sci Technol,2003,37(12):2714 -2719
    [29] Gu B H,Chen J. Enhanced microbial reduction of Cr(Ⅵ) and U(Ⅵ) by different natural organic matter fractions[J]. Geochim Cosmochim Acta,2003,67(19):3575-3582
    [30] Sharpless C M,Aeschbacher M,Page S E,et al. Photooxidation-induced changes in optical,electrochemical and photochemical properties of humic substances[J]. Environ Sci Technol,2014,48(5):2688-2696
    [31] 马晨,周顺桂,庄莉,等. 微生物胞外呼吸电子传递机制研究进展[J]. 生态学报,2011,31(7):2008-2018
    [32] Macalady D L,Ranville J F. Assessing the dynamic behavior of organic contaminants in natural waters//Macalady D L ed.Perspectives in Environmental Chemistry[M]. New York: Oxford University Press, 1998:94-137
    [33] Aeschbacher M,Graf C,Schwarzenbach R P,et al. Antioxidant properties of humic substances[J]. Environ Sci Technol,2012,46(9):4916-4925
    [34] Alberts J J,Schindle J,Miller R W,et al. Elemental mercury evolution mediated by humic acids[J]. Science,1974,184(4139):895-896
    [35] Deiana S,Gessa C,Manunza B,et al. Iron(Ⅲ) reduction by natural humic acids:A potentiometric and spectroscopic study[J]. Soil Sci,1995,46(1):103-108
    [36] Gu B H,Bian Y R,Miller C L,et al. Mercury reduction and complexation by natural organic matter in anoxic environments[J]. Acad Sci,2011,108(4):1479-1483
    [37] Palmer N E,Freudenthal J H,Wandruszka R. Reduction of arsenates by humic materials[J]. Environ Chem,2006,3(2):131-136
    [38] Skogerboe R K,Wilson S A. Reduction of ionic species by fulvic acid[J]. Anal Chem, 1981,53(2):228-232
    [39] Tongesayi T,Smart R B. Environ arsenic speciation: Reduction of arsenic (Ⅴ) to arsenic(Ⅲ) by fulvic acid[J]. Environ Chem,2006,3(2):137-141
    [40] Meunier L,Laubscher H,Hug S J,et al. Effects of size and origin of natural dissolved organic matter compounds on the redox cycling of iron in sunlit surface waters[J]. Aquatic Sci,2005,67(3):292-307
    [41] Voelker B M,Morel F M,Sulzberger B. Iron redox cycling in surface waters:Effects of humic substances and light[J]. Environ Sci Technol,1997,31(4):1004-1011
    [42] Wittbrodt P R,Palmer C D. Reduction of Cr(Ⅵ) in the presence of excess soil fulvic acid[J]. Environ Sci Technol,1995,29(1):255-263
    [43] Wittbrodt P R,Palmer C D. Reduction of Cr(Ⅵ) by soil humic acids[J]. Soil Sci,1997,48(1):151-162
    [44] Nakayasu K,Fukushima M,Sasaki K,et al. Comparative studies of the reduction behavior of chromium(Ⅵ) by humic substances and their precursors[J]. Environ Toxicol Chem,1999,18(6):1085-1090
    [45] Zheng W,Liang L Y,Gu B H. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments[J]. Environ Sci Technol,2012,46(1):292-299
    [46] Jiang T,WEI S Q,Flanagan D C,et al. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems[J]. Pedosphere,2014,24(1):125-136
    [47] Hu H Y,Lin H,Zheng W,et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria[J]. Nat Geosci,2013,September (6):751-754
    [48] Hu H Y,Lin H,Zheng W,et al. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA[J]. Environ Sci Technol,2013,47(19):10922-10930
    [49] Graham A M,Aiken G R,Gilmour C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions[J]. Environ Sci Technol,2012,46(5):2715-2723
    [50] Gilmour C C,Podar M,Bullock A L,et al. Mercury methylation by novel microorganisms from new environments[J]. Environ Sci Technol,2013,47(20):11810-11820
    [51] Parks J M,Johs A,Podar M,et al. The genetic basis for bacterial mercury methylation[J]. Science,2013,339(6125):1332-1335
    [52] Lu X Q,Johnson W D,Hook J. Reaction of vanadate with aquatic humic substances:An ESR and 51V NMR study[J]. Environ Sci Technol,1998,32(15):2257-2263
    [53] Gu B,Yan H,Zhou P,et al. Natural humics impact uranium bioreduction and oxidation[J]. Environ Sci Technol,2005,39(14):5268-5275
    [54] Jafvert C T,Wolfe L N. Degradation of selected halogenated ethanes in anoxic sediment-water systems[J]. Environ Toxicol Chem,1987,6(11):827-837
    [55] Roberts L A,Gschwend P M. Interaction of abiotic and microbial processes in hexachloroethane reduction in groundwater[J]. J Contam Hydrol,1994,16(2):157-174
    [56] 姜杰,李黎,孙国新. 基于三维荧光光谱特征研究土壤腐殖质氧化还原特性[J]. 环境化学,2012,31(12):2002-2006
    [57] McCormick M L,Bouwer E J,Adriaens P. Carbon tetrachloride transformation in a model iron-reducing culture: Relative kinetics of biotic and abiotic reactions[J]. Environ Sci Technol,2002,36(3):403-410
    [58] Dunnivant F M,Schwarrenbach R P. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter[J]. Environ Sci Technol,1992,26(11):2133-2141
  • 加载中
计量
  • 文章访问数:  2460
  • HTML全文浏览数:  2300
  • PDF下载数:  994
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-06-07
袁英, 何小松, 席北斗, 高如泰, 檀文炳, 崔东宇, 唐军. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019
引用本文: 袁英, 何小松, 席北斗, 高如泰, 檀文炳, 崔东宇, 唐军. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019
YUAN Ying, HE Xiaosong, XI Beidou, GAO Rutai, TAN Wenbing, CUI Dongyu, TANG Jun. Research progress on the redox and electron transfer capacity of humic substances[J]. Environmental Chemistry, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019
Citation: YUAN Ying, HE Xiaosong, XI Beidou, GAO Rutai, TAN Wenbing, CUI Dongyu, TANG Jun. Research progress on the redox and electron transfer capacity of humic substances[J]. Environmental Chemistry, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019

腐殖质氧化还原和电子转移特性研究进展

  • 1.  中国环境科学研究院环境基准与风险评估国家重点实验室, 北京, 100012;
  • 2.  中国环境科学研究院地下水与环境系统创新基地, 北京, 100012;
  • 3.  北京师范大学水科学研究院, 北京, 100875;
  • 4.  广东省浩蓝环保水污染治理院士工作站, 广州, 510631
基金项目:

国家杰出青年科学基金项目(51325804)资助.

摘要: 腐殖质在无氧和有氧条件下都具有一定的氧化还原能力,其氧化还原能力与氧化还原电势有关,而腐殖质的氧化还原电势受芳香度、取代基类型、取代位置等因素影响.除氧化还原能力外,腐殖质还能介导电子转移,其电子转移能力受腐殖质结构和所处环境两大因素影响.水体腐殖酸比土壤和沉积物腐殖酸具有相对较小的电子接受能力(EAC)和较大的提供电子能力(EDC);pH、温度、光照、氧气条件和微生物活动等因素均对腐殖质氧化能力和电子转移能力具有重要影响.腐殖质可以介导重金属和有机污染物的还原降解,不同重金属还原反应效率差异较大,其中Fe(Ⅲ)盐还原速率最高;有机污染物降解速率从大到小为六氯乙烷(HCE)> 四氯化碳> 三溴甲烷.目前在腐殖质氧化还原特性和电子转移能力研究中还存在诸多不足,需要广大学者做进一步探究.

English Abstract

参考文献 (58)

返回顶部

目录

/

返回文章
返回