[1] |
栾富波,谢丽,李俊,等. 腐殖酸的氧化还原行为及其研究进展[J].化学通报, 2008,(11):833-837
|
[2] |
Scott D T,Knight D M,Blunt-Harris E,et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environ Sci Technol,1998,32(19):2984-2989
|
[3] |
Pham A N,Rose A L,Waite T D. Kinetics of Cu(Ⅱ) reduction by natural organic matter[J]. J Phys Chem A,2012,116(25):6590-6599
|
[4] |
Lovley D R,Coates J D,Blunt-Harris E,et al. Humic substances as electron acceptors for microbial respiration[J]. Nature,1996(382):445-448
|
[5] |
Lovley D R,Blunt-Harris E L. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(Ⅲ) Reduction[J]. Appl Environ Microbiol,1999,65(9):4252-4254
|
[6] |
Fulton J R,McKnight D M,Foreman C M,et al. Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake[J]. Aquat Sci,2004,66(1):27-46
|
[7] |
Ritchie J D,Perdue E M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter[J]. Geochim Cosmochim Acta,2003,67(1):85-96
|
[8] |
Struyk Z,Sposito G. Redox properties of standard humic acids[J]. Geoderma, 2001,102(3/4):329-346
|
[9] |
Klapper L,McKnight D M,Fulton J R,et al. Fulvic acid oxidation state detection using fluorescence spectroscopy[J]. Environ Sci Technol,2002,36(14):3170-3175
|
[10] |
Nopawan R,Nanny M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environ Sci Technol,2007,41(22):7844-7850
|
[11] |
Uchimiya M,Stone A T. Reversible redox chemistry of quinines:Impact on biogeochemical cycles[J]. Chemosphere,2009,77(4):451-458
|
[12] |
Fimmen R L,Cory R M,Chin Y P,et al. Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter[J]. Geochim Cosmochim Acta,2007,71(12):3003-3015
|
[13] |
Chen J,Gu B H,Royer R A,et al. The roles of natural organic matter in chemical and microbial reduction of ferric iron[J]. Sci Total Environ,2003,307(1/3):167-178
|
[14] |
陈蕾,超峰,王郑,等. 天然有机质对环境污染物的转化过程的介导作用[J]. 生态环境学报,2013,22(7):1244-1249
|
[15] |
Roden E E,Kappler A,Bauer I,et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances[J]. Nat Geosci,2010,3:417-421
|
[16] |
Peretyazhko T,Sposito G. Reducing capacity of terrestrial humic acids[J]. Geoderma, 2006,137(1/2):140-146
|
[17] |
Aeschbacher M,Sander M,Schwarzenbach R P. Novel electrochemical approach to assess the redox properties of humic substances[J]. Environ Sci Technol,2010,44(1):87-93
|
[18] |
Baue I,Kappler A. Rates and extent of reduction of Fe(Ⅲ) compounds and O2 by humic substances[J]. Environ Sci Technol,2009,43(13):4902-4908
|
[19] |
Visser S A. Oxidation-reduction potentials and capillary activities of humic acids[J]. Nature,1964,204:581-581
|
[20] |
Aeschbacher M,Vergari D,Schwarzenbach R P,et al. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids[J]. Environ Sci Technol,2011,45(19):8385-8394
|
[21] |
Klüpfel L. Redox characteristics of quinones in natural organic matter (NOM)[D]. Switzerland: Term paper FS 2009,Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich
|
[22] |
Schwarzenbach R P,Gschwend P, Imboden D. Environmental organic chemistry[M]. New York: Wiley-Interscience, 2003:555-610
|
[23] |
Reale S,Tullio A,Spreti N,et al. Mass spectrometry in the biosynthetic and structural investigation of lignins[J]. Mass Spectrom Rev,2004,23(2):87-126
|
[24] |
Law A H,Threlfall D R,Whistance G R. Isoprenoid phenol and quinone precursors of ubiquinones and dihydroubiquinones [ubiquinones (H2)] in fungi[J]. Biochem J,1971,123(3):331-339
|
[25] |
Gamage R,McQuillan A J,Peake B M. Ultraviolet-visible and electron paramagnetic resonance spectroelectrochemical studies of the reduction products of some anthraquinone sulphonates in aqueous solutions[J]. J Chem Soc,Faraday Trans,1991,87(22):3653-3660
|
[26] |
Aeschbacher. Electrochemical redox characterization of humic substances[D]. Switzerland: ETH Zurich,2011
|
[27] |
Benz M,Schink B,Brune A. Humic acid reduction by propionibacterium freudenreichii and other fermenting bacteria[J]. Appl Environ Microbiol,1998,64(11):4507-4512
|
[28] |
Kappler A,Haderlein S B. Natural organic matter as reductant for chlorinated aliphatic pollutants[J]. Environ Sci Technol,2003,37(12):2714 -2719
|
[29] |
Gu B H,Chen J. Enhanced microbial reduction of Cr(Ⅵ) and U(Ⅵ) by different natural organic matter fractions[J]. Geochim Cosmochim Acta,2003,67(19):3575-3582
|
[30] |
Sharpless C M,Aeschbacher M,Page S E,et al. Photooxidation-induced changes in optical,electrochemical and photochemical properties of humic substances[J]. Environ Sci Technol,2014,48(5):2688-2696
|
[31] |
马晨,周顺桂,庄莉,等. 微生物胞外呼吸电子传递机制研究进展[J]. 生态学报,2011,31(7):2008-2018
|
[32] |
Macalady D L,Ranville J F. Assessing the dynamic behavior of organic contaminants in natural waters//Macalady D L ed.Perspectives in Environmental Chemistry[M]. New York: Oxford University Press, 1998:94-137
|
[33] |
Aeschbacher M,Graf C,Schwarzenbach R P,et al. Antioxidant properties of humic substances[J]. Environ Sci Technol,2012,46(9):4916-4925
|
[34] |
Alberts J J,Schindle J,Miller R W,et al. Elemental mercury evolution mediated by humic acids[J]. Science,1974,184(4139):895-896
|
[35] |
Deiana S,Gessa C,Manunza B,et al. Iron(Ⅲ) reduction by natural humic acids:A potentiometric and spectroscopic study[J]. Soil Sci,1995,46(1):103-108
|
[36] |
Gu B H,Bian Y R,Miller C L,et al. Mercury reduction and complexation by natural organic matter in anoxic environments[J]. Acad Sci,2011,108(4):1479-1483
|
[37] |
Palmer N E,Freudenthal J H,Wandruszka R. Reduction of arsenates by humic materials[J]. Environ Chem,2006,3(2):131-136
|
[38] |
Skogerboe R K,Wilson S A. Reduction of ionic species by fulvic acid[J]. Anal Chem, 1981,53(2):228-232
|
[39] |
Tongesayi T,Smart R B. Environ arsenic speciation: Reduction of arsenic (Ⅴ) to arsenic(Ⅲ) by fulvic acid[J]. Environ Chem,2006,3(2):137-141
|
[40] |
Meunier L,Laubscher H,Hug S J,et al. Effects of size and origin of natural dissolved organic matter compounds on the redox cycling of iron in sunlit surface waters[J]. Aquatic Sci,2005,67(3):292-307
|
[41] |
Voelker B M,Morel F M,Sulzberger B. Iron redox cycling in surface waters:Effects of humic substances and light[J]. Environ Sci Technol,1997,31(4):1004-1011
|
[42] |
Wittbrodt P R,Palmer C D. Reduction of Cr(Ⅵ) in the presence of excess soil fulvic acid[J]. Environ Sci Technol,1995,29(1):255-263
|
[43] |
Wittbrodt P R,Palmer C D. Reduction of Cr(Ⅵ) by soil humic acids[J]. Soil Sci,1997,48(1):151-162
|
[44] |
Nakayasu K,Fukushima M,Sasaki K,et al. Comparative studies of the reduction behavior of chromium(Ⅵ) by humic substances and their precursors[J]. Environ Toxicol Chem,1999,18(6):1085-1090
|
[45] |
Zheng W,Liang L Y,Gu B H. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments[J]. Environ Sci Technol,2012,46(1):292-299
|
[46] |
Jiang T,WEI S Q,Flanagan D C,et al. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems[J]. Pedosphere,2014,24(1):125-136
|
[47] |
Hu H Y,Lin H,Zheng W,et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria[J]. Nat Geosci,2013,September (6):751-754
|
[48] |
Hu H Y,Lin H,Zheng W,et al. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA[J]. Environ Sci Technol,2013,47(19):10922-10930
|
[49] |
Graham A M,Aiken G R,Gilmour C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions[J]. Environ Sci Technol,2012,46(5):2715-2723
|
[50] |
Gilmour C C,Podar M,Bullock A L,et al. Mercury methylation by novel microorganisms from new environments[J]. Environ Sci Technol,2013,47(20):11810-11820
|
[51] |
Parks J M,Johs A,Podar M,et al. The genetic basis for bacterial mercury methylation[J]. Science,2013,339(6125):1332-1335
|
[52] |
Lu X Q,Johnson W D,Hook J. Reaction of vanadate with aquatic humic substances:An ESR and 51V NMR study[J]. Environ Sci Technol,1998,32(15):2257-2263
|
[53] |
Gu B,Yan H,Zhou P,et al. Natural humics impact uranium bioreduction and oxidation[J]. Environ Sci Technol,2005,39(14):5268-5275
|
[54] |
Jafvert C T,Wolfe L N. Degradation of selected halogenated ethanes in anoxic sediment-water systems[J]. Environ Toxicol Chem,1987,6(11):827-837
|
[55] |
Roberts L A,Gschwend P M. Interaction of abiotic and microbial processes in hexachloroethane reduction in groundwater[J]. J Contam Hydrol,1994,16(2):157-174
|
[56] |
姜杰,李黎,孙国新. 基于三维荧光光谱特征研究土壤腐殖质氧化还原特性[J]. 环境化学,2012,31(12):2002-2006
|
[57] |
McCormick M L,Bouwer E J,Adriaens P. Carbon tetrachloride transformation in a model iron-reducing culture: Relative kinetics of biotic and abiotic reactions[J]. Environ Sci Technol,2002,36(3):403-410
|
[58] |
Dunnivant F M,Schwarrenbach R P. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter[J]. Environ Sci Technol,1992,26(11):2133-2141
|