基于表面增强拉曼光谱的微纳塑料肝脏内暴露检测方法研究

王惠桐, 李卿, 陈汉清, 陈瑞, 李晓波. 基于表面增强拉曼光谱的微纳塑料肝脏内暴露检测方法研究[J]. 生态毒理学报, 2023, 18(6): 187-195. doi: 10.7524/AJE.1673-5897.20230730001
引用本文: 王惠桐, 李卿, 陈汉清, 陈瑞, 李晓波. 基于表面增强拉曼光谱的微纳塑料肝脏内暴露检测方法研究[J]. 生态毒理学报, 2023, 18(6): 187-195. doi: 10.7524/AJE.1673-5897.20230730001
Wang Huitong, Li Qing, Chen Hanqing, Chen Rui, Li Xiaobo. Surface-Enhanced Raman Spectroscopy-Based Detection Methods of Intrahepatic Exposure of Micro(nano)-Plastics[J]. Asian journal of ecotoxicology, 2023, 18(6): 187-195. doi: 10.7524/AJE.1673-5897.20230730001
Citation: Wang Huitong, Li Qing, Chen Hanqing, Chen Rui, Li Xiaobo. Surface-Enhanced Raman Spectroscopy-Based Detection Methods of Intrahepatic Exposure of Micro(nano)-Plastics[J]. Asian journal of ecotoxicology, 2023, 18(6): 187-195. doi: 10.7524/AJE.1673-5897.20230730001

基于表面增强拉曼光谱的微纳塑料肝脏内暴露检测方法研究

    作者简介: 王惠桐(2000-),女,医学学士,研究方向为生态毒理学,E-mail:wanght@mail.ccmu.edu.cn
    通讯作者: 李晓波,E-mail:xiaoboli@ccmu.edu.cn
  • 基金项目:

    青年北京学者(陈瑞);国家自然科学基金资助项目(82241084)

  • 中图分类号: X171.5

Surface-Enhanced Raman Spectroscopy-Based Detection Methods of Intrahepatic Exposure of Micro(nano)-Plastics

    Corresponding author: Li Xiaobo, xiaoboli@ccmu.edu.cn
  • Fund Project:
  • 摘要: 微纳塑料因其难以降解和小尺寸特性可能危害人类健康,目前已报道大量微纳塑料检测手段,但是主要集中于食物和环境样本中,尚缺乏评估微纳塑料生物体内暴露水平的研究。表面增强拉曼光谱(SERS)因其灵敏度高、检测速度快和数据处理简单等优点,具有良好的应用前景。本研究基于金核银壳为基底的SERS技术,旨在开发一种高灵敏准确的检测手段评估微纳塑料肝脏内的暴露水平。首先对尺寸为1 000 nm的聚苯乙烯微塑料进行物理化学性质表征。随后通过柠檬酸钠还原法成功制备形貌完整且粒径分布均一的30 nm金核银壳纳米粒子(Au@Ag NPs)。采用SERS对梯度稀释的微塑料标准品溶液进行检测,SERS成功检测浓度范围在10~0.05 mg·mL-1的聚苯乙烯微塑料标准品,绘制标准曲线并计算最低检测限为0.0175 mg·mL-1。构建小鼠微塑料尾静脉注射模型,使用SERS对小鼠肝脏内微塑料浓度进行检测,计算得到肝组织悬液中的微塑料浓度为0.493 mg·mL-1。本研究建立的以Au@Ag为基底的SERS方法可实现肝脏内微塑料浓度的精确定量,弥补微塑料器官内暴露水平评价方法的空缺,为微塑料对人体危害的内暴露研究提供技术支持。
  • 加载中
  • Gong J, Xie P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics [J]. Chemosphere, 2020, 254:126790
    Gan Q, Cui J W, Jin B. Environmental microplastics:Classification, sources, fates, and effects on plants [J]. Chemosphere, 2023, 313:137559
    Lett Z, Hall A, Skidmore S, et al. Environmental microplastic and nanoplastic:Exposure routes and effects on coagulation and the cardiovascular system [J]. Environmental Pollution, 2021, 291:118190
    Liu S J, Guo J L, Liu X Y, et al. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula:A pilot prospective study [J]. The Science of the Total Environment, 2023, 854:158699
    Jenner L C, Rotchell J M, Bennett R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy [J]. Science of the Total Environment, 2022, 831:154907
    Zhao Q C, Zhu L, Weng J M, et al. Detection and characterization of microplastics in the human testis and semen [J]. The Science of the Total Environment, 2023, 877:162713
    Danopoulos E, Twiddy M, West R, et al. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells [J]. Journal of Hazardous Materials, 2022, 427:127861
    Kumar R, Manna C, Padha S, et al. Micro(nano)plastics pollution and human health:How plastics can induce carcinogenesis to humans? [J]. Chemosphere, 2022, 298:134267
    Prata J C, da Costa J P, Lopes I, et al. Environmental exposure to microplastics:An overview on possible human health effects [J]. The Science of the Total Environment, 2020, 702:134455
    Sridhar A, Kannan D, Kapoor A, et al. Extraction and detection methods of microplastics in food and marine systems:A critical review [J]. Chemosphere, 2022, 286(Pt 1):131653
    范玉梅, 石佳颖, 高李璟. 土壤中微塑料的来源及检测[J]. 化工时刊, 2019, 33(6):28-31

    Fan Y M, Shi J Y, Gao L J. The source and detection of microplastics in soil systems [J]. Chemical Industry Times, 2019, 33(6):28-31(in Chinese)

    Yusuf A, Sodiq A, Giwa A, et al. Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards [J]. Environmental Pollution, 2022, 292(Pt B):118421
    Zhou X, Hu Z W, Yang D T, et al. Bacteria detection:From powerful SERS to its advanced compatible techniques [J]. Advanced Science, 2020, 7(23):2001739
    Bi L Y, Wang X, Cao X W, et al. SERS-active Au@Ag core-shell nanorod (Au@AgNR) tags for ultrasensitive bacteria detection and antibiotic-susceptibility testing [J]. Talanta, 2020, 220:121397
    冯艳林, 王建霖, 宁鑫, 等. 金核/银壳纳米棒用于癌细胞的表面增强拉曼散射成像及肿瘤活体光谱检测[J]. 分析化学, 2022, 50(8):1196-1204

    Feng Y L, Wang J L, Ning X, et al. Au@Ag core-shell nanorods for surface enhanced Raman scattering imaging of cancer cells and in vivo cancer spectroscopic detection [J]. Chinese Journal of Analytical Chemistry, 2022, 50(8):1196-1204(in Chinese)

    Xu D W, Su W, Lu H W, et al. A gold nanoparticle doped flexible substrate for microplastics SERS detection [J]. Physical Chemistry Chemical Physics, 2022, 24(19):12036-12042
    Jeon Y, Kim D, Kwon G, et al. Detection of nanoplastics based on surface-enhanced Raman scattering with silver nanowire arrays on regenerated cellulose films [J]. Carbohydrate Polymers, 2021, 272:118470
    Lê Q T, Ly N H, Kim M K, et al. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water [J]. Journal of Hazardous Materials, 2021, 402:123499
    胡均鹏, 陈荣桥, 梁明, 等. 基于Au@Ag纳米粒子的表面增强拉曼光谱技术测定苹果和梨中的福美双[J]. 食品安全质量检测学报, 2022, 13(2):366-372

    Hu J P, Chen R Q, Liang M, et al. Determination of thiram in apples and pears by surface enhanced Raman spectroscopy based on Au@Ag nanoparticles [J]. Journal of Food Safety & Quality, 2022, 13(2):366-372(in Chinese)

    Xie L F, Gong K D, Liu Y Y, et al. Strategies and challenges of identifying nanoplastics in environment by surface-enhanced Raman spectroscopy [J]. Environmental Science & Technology, 2023, 57(1):25-43
    Lv L L, He L, Jiang S Q, et al. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments [J]. The Science of the Total Environment, 2020, 728:138449
    Hu R, Zhang K N, Wang W, et al. Quantitative and sensitive analysis of polystyrene nanoplastics down to 50 nm by surface-enhanced Raman spectroscopy in water [J]. Journal of Hazardous Materials, 2022, 429:128388
    Schwabl P, Köppel S, Königshofer P, et al. Detection of various microplastics in human stool:A prospective case series [J]. Annals of Internal Medicine, 2019, 171(7):453-457
    Huang S M, Huang X X, Bi R, et al. Detection and analysis of microplastics in human sputum [J]. Environmental Science & Technology, 2022, 56(4):2476-2486
    Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood [J]. Environment International, 2022, 163:107199
    Ragusa A, Svelato A, Santacroce C, et al. Plasticenta:First evidence of microplastics in human placenta [J]. Environment International, 2021, 146:106274
  • 加载中
计量
  • 文章访问数:  1296
  • HTML全文浏览数:  1296
  • PDF下载数:  113
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-07-30
王惠桐, 李卿, 陈汉清, 陈瑞, 李晓波. 基于表面增强拉曼光谱的微纳塑料肝脏内暴露检测方法研究[J]. 生态毒理学报, 2023, 18(6): 187-195. doi: 10.7524/AJE.1673-5897.20230730001
引用本文: 王惠桐, 李卿, 陈汉清, 陈瑞, 李晓波. 基于表面增强拉曼光谱的微纳塑料肝脏内暴露检测方法研究[J]. 生态毒理学报, 2023, 18(6): 187-195. doi: 10.7524/AJE.1673-5897.20230730001
Wang Huitong, Li Qing, Chen Hanqing, Chen Rui, Li Xiaobo. Surface-Enhanced Raman Spectroscopy-Based Detection Methods of Intrahepatic Exposure of Micro(nano)-Plastics[J]. Asian journal of ecotoxicology, 2023, 18(6): 187-195. doi: 10.7524/AJE.1673-5897.20230730001
Citation: Wang Huitong, Li Qing, Chen Hanqing, Chen Rui, Li Xiaobo. Surface-Enhanced Raman Spectroscopy-Based Detection Methods of Intrahepatic Exposure of Micro(nano)-Plastics[J]. Asian journal of ecotoxicology, 2023, 18(6): 187-195. doi: 10.7524/AJE.1673-5897.20230730001

基于表面增强拉曼光谱的微纳塑料肝脏内暴露检测方法研究

    通讯作者: 李晓波,E-mail:xiaoboli@ccmu.edu.cn
    作者简介: 王惠桐(2000-),女,医学学士,研究方向为生态毒理学,E-mail:wanght@mail.ccmu.edu.cn
  • 首都医科大学公共卫生学院, 北京 100069
基金项目:

青年北京学者(陈瑞);国家自然科学基金资助项目(82241084)

摘要: 微纳塑料因其难以降解和小尺寸特性可能危害人类健康,目前已报道大量微纳塑料检测手段,但是主要集中于食物和环境样本中,尚缺乏评估微纳塑料生物体内暴露水平的研究。表面增强拉曼光谱(SERS)因其灵敏度高、检测速度快和数据处理简单等优点,具有良好的应用前景。本研究基于金核银壳为基底的SERS技术,旨在开发一种高灵敏准确的检测手段评估微纳塑料肝脏内的暴露水平。首先对尺寸为1 000 nm的聚苯乙烯微塑料进行物理化学性质表征。随后通过柠檬酸钠还原法成功制备形貌完整且粒径分布均一的30 nm金核银壳纳米粒子(Au@Ag NPs)。采用SERS对梯度稀释的微塑料标准品溶液进行检测,SERS成功检测浓度范围在10~0.05 mg·mL-1的聚苯乙烯微塑料标准品,绘制标准曲线并计算最低检测限为0.0175 mg·mL-1。构建小鼠微塑料尾静脉注射模型,使用SERS对小鼠肝脏内微塑料浓度进行检测,计算得到肝组织悬液中的微塑料浓度为0.493 mg·mL-1。本研究建立的以Au@Ag为基底的SERS方法可实现肝脏内微塑料浓度的精确定量,弥补微塑料器官内暴露水平评价方法的空缺,为微塑料对人体危害的内暴露研究提供技术支持。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回