微藻对抗生素的生态毒性响应和消除作用的研究进展
Review on Ecotoxicological Effects of Antibiotics and Their Removal by Microalgae
-
摘要: 抗生素在环境中的暴露及其生态风险已引起了广泛关注。微藻作为水生态系统的初级生产者,对于维持生态系统的平衡和稳定具有重要作用。本文综述了抗生素对微藻的生长、超微结构、光合系统、抗氧化系统和基因表达的毒性效应;分析总结了微藻对抗生素的消除作用和机制,以及光降解、生物吸附、生物富集和生物降解在抗生素消除过程中的贡献;初步探讨了抗生素的生态毒性效应与微藻对其消除作用之间的交互作用;最后指出未来应加强长期暴露下低浓度抗生素的联合毒性效应和微藻的生物降解机制方面的研究,为抗生素的生态风险的准确评估提供科学依据。Abstract: The occurrence and ecological risk of antibiotics in the environment have attracted global concern. As the primary producer in the aquatic ecosystem, microalgae play an important role in maintaining the stability and balance of the ecosystem. In this paper, the ecotoxicological effect of antibiotics on the growth, ultrastructure, photosynthetic system, antioxidant system and related gene expression of microalgae was reviewed. The removal efficiency and mechanism of antibiotics by microalgae were summarized, and the contributions of photodegradation, biosorption, bioaccumulation and biodegradation in the removal of antibiotics were analyzed. The interaction effects between the ecotoxicity of antibiotics and their removal by microalgae were preliminarily explored. At last, it was pointed out that the research about the combined ecotoxicology effects of low concentration of antibiotics under long-term exposure, and the biodegradation mechanisms of antibiotics by microalgae should also be strengthened for future research. This paper provides a scientific basis for the accurate assessment of the ecological risk of antibiotics.
-
Key words:
- antibiotics /
- microalgae /
- ecotoxicity /
- biodegradation /
- elimination
-
-
徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3):11-27 Xu Y G, Yu W T, Ma Q, et al. The antibiotic in environment and its ecotoxicity:A review[J]. Asian Journal of Ecotoxicology, 2015, 10(3):11-27(in Chinese)
Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782 陈宇, 许亚南, 庞燕. 抗生素赋存、来源及风险评估研究进展[J]. 环境工程技术学报, 2021, 11(3):562-570 Chen Y, Xu Y N, Pang Y. Advances in research on the occurrence, source and risk assessment of antibiotics[J]. Journal of Environmental Engineering Technology, 2021, 11(3):562-570(in Chinese)
李威, 李佳熙, 李吉平, 等. 我国不同环境介质中的抗生素污染特征研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(1):205-214 Li W, Li J X, Li J P, et al. Pollution characteristics of antibiotics in different environment media in China:A review[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1):205-214(in Chinese) Wang L F, Wang Y F, Li H, et al. Occurrence, source apportionment and source-specific risk assessment of antibiotics in a typical tributary of the Yellow River Basin[J]. Journal of Environmental Management, 2022, 305:114382 Lei K, Zhu Y, Chen W, et al. Spatial and seasonal variation of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment[J]. Environmental International, 2019, 130:104919 Zhou L J, Li J, Zhang Y D, et al. Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River Basin, China[J]. Ecotoxicology and Environmental Safety, 2019, 183:109511 Zhou Q Q, Liu G J, Arif M, et al. Occurrence and risk assessment of antibiotics in the surface water of Chaohu Lake and its tributaries in China[J]. The Science of the Total Environment, 2022, 807(Pt 3):151040 Zhang G D, Liu X H, Lu S Y, et al. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model[J]. Chemosphere, 2020, 242:125269 Wu Q, Xiao S K, Pan C G, et al. Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China[J]. Science of the Total Environment, 2022, 806:150439 Li F F, Chen L J, Chen W D, et al. Antibiotics in coastal water and sediments of the East China Sea:Distribution, ecological risk assessment and indicators screening[J]. Marine Pollution Bulletin, 2020, 151:110810 Välitalo P, Kruglova A, Mikola A, et al. Toxicological impacts of antibiotics on aquatic micro-organisms:A mini-review[J]. International Journal of Hygiene and Environmental Health, 2017, 220(3):558-569 方媛瑗, 丁惠君. 抗生素的生态毒性效应研究进展[J]. 环境科学与技术, 2018, 41(5):102-110 Fang Y Y, Ding H J. Advance in ecological toxicity of antibiotics[J]. Environmental Science & Technology, 2018, 41(5):102-110(in Chinese)
Liu R B, Li S Q, Tu Y F, et al. Capabilities and mechanisms of microalgae on removing micropollutants from wastewater:A review[J]. Journal of Environmental Management, 2021, 285:112149 Xie P, Chen C, Zhang C F, et al. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae[J]. Water Research, 2020, 172:115475 Xiong J Q, Kim S J, Kurade M B, et al. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus:Toxicity, biodegradation, and metabolic fate[J]. Journal of Hazardous Materials, 2019, 370:138-146 Eguchi K, Nagase H, Ozawa M, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae[J]. Chemosphere, 2004, 57(11):1733-1738 Zhang Y B, He D, Chang F, et al. Combined effects of sulfamethoxazole and erythromycin on a freshwater microalga, Raphidocelis subcapitata:Toxicity and oxidative stress[J]. Antibiotics, 2021, 10(5):576 Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata[J]. Environmental Toxicology and Chemistry, 2008, 27(5):1201-1208 Kovalakova P, Cizmas L, Feng M B, et al. Oxidation of antibiotics by ferrate(Ⅵ) in water:Evaluation of their removal efficiency and toxicity changes[J]. Chemosphere, 2021, 277:130365 Borecka M, Białk-Bielińska A, Haliński Ł P, et al. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris[J]. Journal of Hazardous Materials, 2016, 308:179-186 Sun M, Lin H, Guo W, et al. Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa[J]. Journal of Ocean University of China, 2017, 16(6):1167-1174 Rico A, Zhao W K, Gillissen F, et al. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin[J]. Ecotoxicology and Environmental Safety, 2018, 148:228-236 Wang G X, Zhang Q, Li J L, et al. Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris[J]. Aquatic Toxicology, 2019, 212:138-145 Xiong J Q, Kurade M B, Jeon B H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium[J]. Environmental Pollution, 2017, 226:486-493 Carusso S, Juárez A B, Moretton J, et al. Effects of three veterinary antibiotics and their binary mixtures on two green alga species[J]. Chemosphere, 2018, 194:821-827 Magdaleno A, Saenz M E, Juárez A B, et al. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata[J]. Ecotoxicology and Environmental Safety, 2015, 113:72-78 Martins N, Pereira R, Abrantes N, et al. Ecotoxicological effects of ciprofloxacin on freshwater species:Data integration and derivation of toxicity thresholds for risk assessment[J]. Ecotoxicology, 2012, 21(4):1167-1176 Xiong J Q, Kurade M B, Kim J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Journal of Hazardous Materials, 2017, 323(Pt A):212-219 Li J P, Min Z F, Li W, et al. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa:Toxicity and removal mechanism[J]. Ecotoxicology and Environmental Safety, 2020, 191:110156 Xiong Q, Hu L X, Liu Y S, et al. New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy[J]. Aquatic Toxicology, 2019, 207:197-207 Guo J H, Peng J L, Lei Y, et al. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris[J]. Aquatic Toxicology, 2020, 219:105376 Machado M D, Soares E V. Impact of erythromycin on a non-target organism:Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata[J]. Aquatic Toxicology, 2019, 208:179-186 González-Pleiter M, Gonzalo S, Rodea-Palomares I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms:Implications for environmental risk assessment[J]. Water Research, 2013, 47(6):2050-2064 Xu D M, Xiao Y P, Pan H, et al. Toxic effects of tetracycline and its degradation products on freshwater green algae[J]. Ecotoxicology and Environmental Safety, 2019, 174:43-47 Lu L, Wu Y X, Ding H J, et al. The combined and second exposure effect of copper (Ⅱ) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa[J]. Environmental Toxicology and Pharmacology, 2015, 40(1):140-148 中华人民共和国国家环境保护总局. 新化学物质危害评估导则:HJ/T 154-2004[S]. 北京:中国环境科学出版社, 2004 Mao Y F, Yu Y, Ma Z X, et al. Azithromycin induces dual effects on microalgae:Roles of photosynthetic damage and oxidative stress[J]. Ecotoxicology and Environmental Safety, 2021, 222:112496 Niu Z G, Xu W A, Na J, et al. How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima:A probable positive factor for red tides[J]. Environmental Pollution, 2019, 255(Pt 1):113149 Chen S, Wang L Q, Feng W B, et al. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris:Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids[J]. Scientific Reports, 2020, 10(1):8243 Xu D M, Xie Y T, Li J. Toxic effects and molecular mechanisms of sulfamethoxazole on Scenedesmus obliquus[J]. Ecotoxicology and Environmental Safety, 2022, 232:113258 Chen S, Zhang W, Li J Y, et al. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum)[J]. Environmental Pollution, 2020, 263:114554 Xiong J Q, Govindwar S, Kurade M B, et al. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus[J]. Chemosphere, 2019, 218:551-558 张红波, 董聪聪, 杨燕君, 等. 基于叶绿素荧光探讨链霉素对念珠藻生长及光合毒性效应[J]. 水生生物学报, 2019, 43(3):664-669 Zhang H B, Dong C C, Yang Y J, et al. The toxic effect of streptomycin on the growth and photosynthesis of Nostoc using the chlorophyll fluorescence analysis[J]. Acta Hydrobiologica Sinica, 2019, 43(3):664-669(in Chinese)
许萍萍, 涂晓杰, 成凤凤, 等. 庆大霉素对斜生栅藻生长与光合活性的影响[J]. 环境科学与技术, 2021, 44(8):146-153 Xu P P, Tu X J, Cheng F F, et al. Toxic effects of gentamicin on growth and activity of photosynthetic system Ⅱ of Scenedesmus obliquus[J]. Environmental Science & Technology, 2021, 44(8):146-153(in Chinese)
Xiong J Q, Kurade M B, Abou-Shanab R A, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate[J]. Bioresource Technology, 2016, 205:183-190 Han Q Z, Zheng Y, Qi Q J, et al. Involvement of oxidative stress in the sensitivity of two algal species exposed to roxithromycin[J]. Ecotoxicology, 2020, 29(5):625-633 Nie X P, Liu B Y, Yu H J, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata[J]. Environmental Pollution, 2013, 172:23-32 Zhang Q, Bai Y, Chen Z, et al. Lincomycin-induced transcriptional alterations in the green alga Raphidocelis subcapitata[J]. Applied Sciences, 2020, 10(23):8565 Guo J H, Zhang Y B, Mo J Z, et al. Sulfamethoxazole-altered transcriptomein green alga Raphidocelis subcapitata suggests inhibition of translation and DNA damage repair[J]. Frontiers in Microbiology, 2021, 12:541451 Li J P, Li W, Min Z F, et al. Physiological, biochemical and transcription effects of roxithromycin before and after phototransformation in Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2021, 238:105911 Guo J H, Bai Y, Chen Z, et al. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin[J]. Ecotoxicology and Environmental Safety, 2020, 201:110737 Jiang R X, Wei Y R, Sun J Y, et al. Degradation of cefradine in alga-containing water environment:A mechanism and kinetic study[J]. Environmental Science and Pollution Research International, 2019, 26(9):9184-9192 杜迎翔, 冯云庆, 项钟润, 等. 蛋白核小球藻去除2种头孢类抗生素的研究[J]. 环境科学与技术, 2015, 38(10):105-111 Du Y X, Feng Y Q, Xiang Z R, et al. Removal of two cephalosporins in Chlorella pyrenoidosa[J]. Environmental Science & Technology, 2015, 38(10):105-111(in Chinese)
Du Y X, Wang J, Li H T, et al. The dual function of the algal treatment:Antibiotic elimination combined with CO2 fixation[J]. Chemosphere, 2018, 211:192-201 Yu Y, Zhou Y Y, Wang Z L, et al. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment[J]. Scientific Reports, 2017, 7(1):4168 Chen Q H, Zhang L, Han Y H, et al. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems[J]. Environmental Science and Pollution Research International, 2020, 27(22):28198-28208 Xiong Q, Liu Y S, Hu L X, et al. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa[J]. Water Research, 2020, 175:115656 Kiki C, Rashid A, Wang Y W, et al. Dissipation of antibiotics by microalgae:Kinetics, identification of transformation products and pathways[J]. Journal of Hazardous Materials, 2020, 387:121985 Xiong J Q, Kurade M B, Patil D V, et al. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater[J]. Algal Research, 2017, 25:54-61 Xiong J Q, Kurade M B, Jeon B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris[J]. Chemical Engineering Journal, 2017, 313:1251-1257 Zhou T, Cao L P, Zhang Q, et al. Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway[J]. Journal of Hazardous Materials, 2021, 413:125310 Zhao F, Zhang D, Xu C Y, et al. The enhanced degradation and detoxification of chlortetracycline by Chlamydomonas reinhardtii[J]. Ecotoxicology and Environmental Safety, 2020, 196:110552 Pan M M, Lyu T, Zhan L M, et al. Mitigating antibiotic pollution using cyanobacteria:Removal efficiency, pathways and metabolism[J]. Water Research, 2021, 190:116735 周楠, 陈建秋, 王晓, 等. 氮磷营养调控对微藻去除抗生素的增效作用研究[J]. 水处理技术, 2021, 47(3):32-37 Zhou N, Chen J Q, Wang X, et al. Study on the synergistic effect of nitrogen and phosphorus nutrition regulation on the antibiotic removal by microalgae[J]. Technology of Water Treatment, 2021, 47(3):32-37(in Chinese)
Batchu S R, Panditi V R, O'Shea K E, et al. Photodegradation of antibiotics under simulated solar radiation:Implications for their environmental fate[J]. The Science of the Total Environment, 2014, 470-471:299-310 Yan S W, Song W H. Photo-transformation of pharmaceutically active compounds in the aqueous environment:A review[J]. Environmental Science:Processes & Impacts, 2014, 16(4):697-720 Wei L X, Li H X, Lu J F. Algae-induced photodegradation of antibiotics:A review[J]. Environmental Pollution, 2021, 272:115589 Tian Y J, Zou J R, Feng L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs):Role of triplet state EOMs[J]. Water Research, 2019, 149:35-41 Tian Y J, Wei L X, Yin Z, et al. Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline:Role of chemical constituents and structure[J]. Water Research, 2019, 164:114940 Leng L J, Wei L, Xiong Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater:A review[J]. Chemosphere, 2020, 238:124680 Santaeufemia S, Torres E, Mera R, et al. Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum[J]. Journal of Hazardous Materials, 2016, 320:315-325 Hena S, Gutierrez L, Croué J P. Removal of metronidazole from aqueous media by C. vulgaris[J]. Journal of Hazardous Materials, 2020, 384:121400 Cao J S, Jiang R X, Wang J Q, et al. Study on the interaction mechanism between cefradine and Chlamydomonas reinhardtii in water solutions under dark condition[J]. Ecotoxicology and Environmental Safety, 2018, 159:56-62 钟雪晴, 朱雅莉, 王玉娇, 等. 含抗生素废水的微藻处理技术及其进展[J]. 化工进展, 2021, 40(4):2308-2317 Zhong X Q, Zhu Y L, Wang Y J, et al. Progress on antibiotic wastewater treatment by microalgae[J]. Chemical Industry and Engineering Progress, 2021, 40(4):2308-2317(in Chinese)
Xiong J Q, Kurade M B, Jeon B H. Can microalgae remove pharmaceutical contaminants from water?[J]. Trends in Biotechnology, 2018, 36(1):30-44 Zhang C J, Zhang Q F, Dong S S, et al. Could co-substrate sodium acetate simultaneously promote Chlorella to degrade amoxicillin and produce bioresources?[J]. Journal of Hazardous Materials, 2021, 417:126147 Hom-Diaz A, Jaén-Gil A, Rodríguez-Mozaz S, et al. Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and Pseudokirchneriella subcapitata)[J]. Algal Research, 2022, 61:102560 -

计量
- 文章访问数: 4067
- HTML全文浏览数: 4067
- PDF下载数: 173
- 施引文献: 0