土壤和食物中砷生物可给性与生物有效性研究进展

张述习, 蒋喜艳, 田勇, 乔国栋, 彭晓瑛, 刘媛媛, 邓智文, 尹西翔, 王利红. 土壤和食物中砷生物可给性与生物有效性研究进展[J]. 生态毒理学报, 2022, 17(5): 239-250. doi: 10.7524/AJE.1673-5897.20211117003
引用本文: 张述习, 蒋喜艳, 田勇, 乔国栋, 彭晓瑛, 刘媛媛, 邓智文, 尹西翔, 王利红. 土壤和食物中砷生物可给性与生物有效性研究进展[J]. 生态毒理学报, 2022, 17(5): 239-250. doi: 10.7524/AJE.1673-5897.20211117003
Zhang Shuxi, Jiang Xiyan, Tian Yong, Qiao Guodong, Peng Xiaoying, Liu Yuanyuan, Deng Zhiwen, Yin Xixiang, Wang Lihong. Research Progress of Arsenic Bio-accessibility and Bioavailability in Soils and Foods[J]. Asian journal of ecotoxicology, 2022, 17(5): 239-250. doi: 10.7524/AJE.1673-5897.20211117003
Citation: Zhang Shuxi, Jiang Xiyan, Tian Yong, Qiao Guodong, Peng Xiaoying, Liu Yuanyuan, Deng Zhiwen, Yin Xixiang, Wang Lihong. Research Progress of Arsenic Bio-accessibility and Bioavailability in Soils and Foods[J]. Asian journal of ecotoxicology, 2022, 17(5): 239-250. doi: 10.7524/AJE.1673-5897.20211117003

土壤和食物中砷生物可给性与生物有效性研究进展

    作者简介: 张述习(1998-),男,硕士研究生,研究方向为环境毒理学,E-mail:10431201110@stu.qlu.edu.cn
    通讯作者: 尹西翔, E-mail: jnhbjyinxixiang@jn.shandong.cn 王利红, E-mail: wanglihong@qlu.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(41671485);山东省自然科学基金面上项目(ZR2017MD008);山东省博士基金资助项目(BS2013HZ009)

  • 中图分类号: X171.5

Research Progress of Arsenic Bio-accessibility and Bioavailability in Soils and Foods

    Corresponding authors: Yin Xixiang, jnhbjyinxixiang@jn.shandong.cn ;  Wang Lihong, wanglihong@qlu.edu.cn
  • Fund Project:
  • 摘要: 砷是一种环境中广泛存在致癌元素。土壤中的砷污染不仅会影响作物的产量和质量,而且还可通过食物链扩散到人体,严重威胁人类健康。近些年来,研究人员对砷生物有效性和可给性开展了系列相关研究。本文对重金属砷的来源与危害进行了归纳;对砷生物可给性与生物有效性的概念及两者之间的联系进行了总结;对in vivo、Caco-2细胞模型以及7种in vitro方法进行了分析概括;总结分析了不同因素(砷浓度及其形态、矿物质元素、营养状态和结肠微生物等)对土壤和食物中砷生物可给性和生物有效性产生的影响。最后,本文对未来砷生物有效性与可给性的评估及砷污染机制探索工作进行了展望,提出标准化体外胃肠模型的应用将使砷健康风险评估结果更为可靠。
  • 加载中
  • 中华人民共和国环境保护部,中华人民共和国国土资源部. 全国土壤污染状况调查公报[R]. 北京:中华人民共和国环境保护部, 中华人民共和国国土资源部, 2014
    Oves M, Khan M S, Zaidi A, et al. Soil contamination, nutritive value, and human health risk assessment of heavy metals:An overview[M]//Toxicity of Heavy Metals to Legumes and Bioremediation. Vienna:Springer Vienna, 2012:1-27
    陈怀满, 郑春荣, 涂从, 等. 中国土壤重金属污染现状与防治对策[J]. AMBIO-人类环境杂志, 1999, 28(2):130-134

    , 207 Chen H M, Zheng C R, Tu C, et al. Heavy metal pollution in soils in Chian:Status and countermeasures[J]. AMBIO-A Journal of the Hunman Environment, 1999, 28(2):130-134, 207(in Chinese)

    Vodyanitskii Y N. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review)[J]. Eurasian Soil Science, 2013, 46(7):793-801
    Dong W Q Y, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination:An International Journal, 2001, 10(5):497-510
    Bhattacharya P, Welch A H, Stollenwerk K G, et al. Arsenic in the environment:Biology and chemistry[J]. Science of the Total Environment, 2007, 379(2-3):109-120
    Jomova K, Jenisova Z, Feszterova M, et al. Arsenic:Toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology:JAT, 2011, 31(2):95-107
    US EPA National Center for Environmental Assessment, Exposure Analysis Group. Child-Specific Exposure Factors Handbook[R]. Washington DC:US EPA National Center for Environmental Assessment, Exposure Analysis and Risk Characterization Group, 2002
    Zhu Y G, Sun G X, Lei M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science & Technology, 2008, 42(13):5008-5013
    Ljung K, Selinus O, Otabbong E, et al. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children[J]. Applied Geochemistry, 2006, 21(9):1613-1624
    Su Y H, McGrath S, Zhao F. Rice is more efficient in arsenite uptake and translocation than wheat and barley[J]. Plant and Soil, 2010, 328:27-34
    Williams P N, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science & Technology, 2007, 41(19):6854-6859
    Chen H P, Tang Z, Wang P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238:482-490
    Arao T, Kawasaki A, Baba K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology, 2009, 43(24):9361-9367
    Signes-Pastor A J, Carey M, Meharg A A. Inorganic arsenic removal in rice bran by percolating cooking water[J]. Food Chemistry, 2017, 234:76-80
    Ruangwises S, Saipan P, Tengjaroenkul B, et al. Total and inorganic arsenic in rice and rice bran purchased in Thailand[J]. Journal of Food Protection, 2012, 75(4):771-774
    Sun G X, Williams P N, Carey A M, et al. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain[J]. Environmental Science & Technology, 2008, 42(19):7542-7546
    Twaddle N C, Vanlandingham M, Beland F A, et al. Metabolism and disposition of arsenic species after repeated oral dosing with sodium arsenite in drinking water. Ⅱ. Measurements in pregnant and fetal CD-1 mice[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2018, 115:178-184
    Brahman K D, Kazi T G, Afridi H I, et al. Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan[J]. The Science of the Total Environment, 2016, 544:653-660
    Cheyns K, Waegeneers N, van de Wiele T, et al. Arsenic release from foodstuffs upon food preparation[J]. Journal of Agricultural and Food Chemistry, 2017, 65(11):2443-2453
    Wang X, Geng A J, Dong Y, et al. Comparison of translocation and transformation from soil to rice and metabolism in rats for four arsenic species[J]. Journal of Agricultural and Food Chemistry, 2017, 65(41):8992-8998
    Molin M, Ulven S M, Meltzer H M, et al. Arsenic in the human food chain, biotransformation and toxicology:Review focusing on seafood arsenic[J]. Journal of Trace Elements in Medicine and Biology:Organ of the Society for Minerals and Trace Elements (GMS), 2015, 31:249-259
    Alava P, Tack F, Laing G D, et al. Arsenic undergoes significant speciation changes upon incubation of contaminated rice with human colon micro biota[J]. Journal of Hazardous Materials, 2013, 262:1237-1244
    Sun H J, Rathinasabapathi B, Wu B, et al. Arsenic and selenium toxicity and their interactive effects in humans[J]. Environment International, 2014, 69:148-158
    Calatayud M, Devesa V, Vélez D. Differential toxicity and gene expression in Caco-2 cells exposed to arsenic species[J]. Toxicology Letters, 2013, 218(1):70-80
    Leffers L, Wehe C A, Hüwel S, et al. In vitro intestinal bioavailability of arsenosugar metabolites and presystemic metabolism of thio-dimethylarsinic acid in Caco-2 cells[J]. Metallomics:Integrated Biometal Science, 2013, 5(8):1031-1042
    Leffers L, Ebert F, Taleshi M S, et al. In vitro toxicological characterization of two arsenosugars and their metabolites[J]. Molecular Nutrition & Food Research, 2013, 57(7):1270-1282
    Hirner A V, Hartmann L M, Hippler J, et al. Organometal(loid) Compounds Associated with Human Metabolism[M]//Organic Metal and Metalloid Species in the Environment. Berlin, Heidelberg:Springer Berlin Heidelberg, 2004:181-203
    Majumdar S, Maiti A, Karmakar S, et al. Antiapoptotic efficacy of folic acid and vitamin B12 against arsenic-induced toxicity[J]. Environmental Toxicology, 2012, 27(6):351-363
    Herrera A, Pineda J, Antonio M T. Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants[J]. Environmental Toxicology and Pharmacology, 2013, 36(1):73-79
    Van de Wiele T, Gallawa C M, Kubachka K M, et al. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils[J]. Environmental Health Perspectives, 2010, 118(7):1004-1009
    Rodriguez R R, Basta N T, Casteel S W, et al. An In vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental Science & Technology, 1999, 33(4):642-649
    Juhasz A L, Weber J, Smith E, et al. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils[J]. Environmental Science & Technology, 2009, 43(24):9487-9494
    Li J, Li K, Cui X Y, et al. In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils:Method comparison and method development[J]. The Science of the Total Environment, 2015, 532:812-820
    郑小曼. 叶菜类蔬菜中砷的生物有效性研究[D]. 南宁:广西大学, 2017:33-39 Zheng X M. Bioavailability of arsenic in leafy vegetables[D]. Nanning:Guangxi University, 2017:33

    -39(in Chinese)

    Wang P F, Yin N Y, Cai X L, et al. Comparison of bioaccessibility and relative bioavailability of arsenic in rice bran:The in vitro with PBET/SHIME and in vivo with mice model[J]. Chemosphere, 2020, 259:127443
    Li J, Chen S, Li H B, et al. Arsenic bioaccessibility in rice grains via modified physiologically-based extraction test (MPBET):Correlation with mineral elements and comparison with As relative bioavailability[J]. Environmental Research, 2021, 198:111198
    Wang P F, Yin N Y, Cai X L, et al. Assessment of arsenic distribution, bioaccessibility and speciation in rice utilizing continuous extraction and in vitro digestion[J]. Food Chemistry, 2021, 346:128969
    van de Wiele T R, Oomen A G, Wragg J, et al. Comparison of five in vitro digestion models to in vivo experimental results:Lead bioaccessibility in the human gastrointestinal tract[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(9):1203-1211
    Juhasz A L, Smith E, Weber J, et al. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment[J]. Environmental Health Perspectives, 2006, 114(12):1826-1831
    Li H B, Li M Y, Zhao D, et al. Oral bioavailability of As, Pb, and Cd in contaminated soils, dust, and foods based on animal bioassays:A review[J]. Environmental Science & Technology, 2019, 53(18):10545-10559
    蔡美芳, 吴仁人, 李开明, 等. 植物性食物中重金属生物可利用性研究进展[J]. 环境科学与技术, 2014, 37(11):99-104

    Cai M F, Wu R R, Li K M, et al. Bioavailability of heavy metals in vegetable food grown in contaminated soils[J]. Environmental Science & Technology, 2014, 37(11):99-104(in Chinese)

    Yin N Y, Zhao Y L, Wang P F, et al. Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils[J]. Environmental Pollution, 2021, 279:116943
    王振洲, 崔岩山, 张震南, 等. Caco-2细胞模型评估金属人体生物有效性的研究进展[J]. 生态毒理学报, 2014, 9(6):1027-1034

    Wang Z Z, Cui Y S, Zhang Z N, et al. Evaluation on the human bioavailability of metals using Caco-2 cell model:A review[J]. Asian Journal of Ecotoxicology, 2014, 9(6):1027-1034(in Chinese)

    张东平, 余应新, 张帆, 等. 环境污染物对人体生物有效性测定的胃肠模拟研究现状[J]. 科学通报, 2008, 53(21):2537-2545

    Zhang D P, Yu Y X, Zhang F, et al. Current status of gastrointestinal simulation research on determination of bioavailability of environmental pollutants to human body[J]. Chinese Science Bulletin, 2008, 53(21):2537-2545(in Chinese)

    Vázquez M, Devesa V, Vélez D. Characterization of the intestinal absorption of inorganic mercury in Caco-2 cells[J]. Toxicology in Vitro, 2015, 29(1):93-102
    Li M Y, Wang P, Wang J Y, et al. Arsenic concentrations, speciation, and localization in 141 cultivated market mushrooms:Implications for arsenic exposure to humans[J]. Environmental Science & Technology, 2019, 53(1):503-511
    Juhasz A L, Smith E, Nelson C, et al. Variability associated with as in vivo-in vitro correlations when using different bioaccessibility methodologies[J]. Environmental Science & Technology, 2014, 48(19):11646-11653
    Bradham K D, Scheckel K G, Nelson C M, et al. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils[J]. Environmental Health Perspectives, 2011, 119(11):1629-1634
    Bradham K D, Diamond G L, Scheckel K G, et al. Mouse assay for determination of arsenic bioavailability in contaminated soils[J]. Journal of Toxicology and Environmental Health Part A, 2013, 76(13):815-826
    Li S W, Sun H J, Wang G, et al. Lead relative bioavailability in soils based on different endpoints of a mouse model[J]. Journal of Hazardous Materials, 2017, 326:94-100
    Mandal B K, Ogra Y, Suzuki K T. Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in west Bengal, India[J]. Chemical Research in Toxicology, 2001, 14(4):371-378
    Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94:600-606
    Calatayud M, Barrios J A, Vélez D, et al. In vitro study of transporters involved in intestinal absorption of inorganic arsenic[J]. Chemical Research in Toxicology, 2012, 25(2):446-453
    Calatayud M, Gimeno J, Vélez D, et al. Characterization of the intestinal absorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid using the Caco-2 cell line[J]. Chemical Research in Toxicology, 2010, 23(3):547-556
    崔岩山, 陈晓晨, 付瑾. 污染土壤中铅、砷的生物可给性研究进展[J]. 生态环境学报, 2010, 19(2):480-486

    Cui Y S, Chen X C, Fu J. Progress in study of bioaccessibility of lead and arsenic in contaminated soils[J]. Ecology and Environmental Sciences, 2010, 19(2):480-486(in Chinese)

    Van de Wiele T R, Verstraete W, Siciliano S D. Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract[J]. Journal of Environmental Quality, 2004, 33(4):1343-1353
    Tang X Y, Zhu Y G, Cui Y S, et al. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China[J]. Environment International, 2006, 32(5):682-689
    Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. The Science of the Total Environment, 2011, 409(19):4016-4030
    Lu K, Cable P H, Abo R P, et al. Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation[J]. Chemical Research in Toxicology, 2013, 26(12):1893-1903
    Yin N Y, Zhang Z N, Cai X L, et al. In vitro method to assess soil arsenic metabolism by human gut Microbiota:Arsenic speciation and distribution[J]. Environmental Science & Technology, 2015, 49(17):10675-10681
    Ruby M V, Davis A, Link T E, et al. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead[J]. Environmental Science & Technology, 1993, 27(13):2870-2877
    Oomen A G, Hack A, Minekus M, et al. Comparison of five In vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental Science & Technology, 2002, 36(15):3326-3334
    Ljung K, Oomen A, Duits M, et al. Bioaccessibility of metals in urban playground soils[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(9):1241-1250
    Minekus M, Smeets-Peeters M, Bernalier A, et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products[J]. Applied Microbiology and Biotechnology, 1999, 53(1):108-114
    Hack A, Selenka F. Mobilization of PAH and PCB from contaminated soil using a digestive tract model[J]. Toxicology Letters, 1996, 88(1-3):199-210
    Medlin E A. An in vitro method for estimating the relative bioavailability of lead in humans[D]. Colorado:University of Colorado, 1997, 23(3):243-249
    Van de Wiele T, Vanhaecke L, Boeckaert C, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites[J]. Environmental Health Perspectives, 2005, 113(1):6-10
    Yin N Y, Du H L, Wang P F, et al. Interindividual variability of soil arsenic metabolism by human gut microbiota using SHIME model[J]. Chemosphere, 2017, 184:460-466
    尹乃毅, 都慧丽, 张震南, 等. 应用SHIME模型研究肠道微生物对土壤中镉、铬、镍生物可给性的影响[J]. 环境科学, 2016, 37(6):2353-2358

    Yin N Y, Du H L, Zhang Z N, et al. Effects of human gut Microbiota on bioaccessibility of soil Cd, Cr and Ni using SHIME model[J]. Environmental Science, 2016, 37(6):2353-2358(in Chinese)

    Wang P F, Yin N Y, Cai X L, et al. Nutritional status affects the bioaccessibility and speciation of arsenic from soils in a simulator of the human intestinal microbial ecosystem[J]. The Science of the Total Environment, 2018, 644:815-821
    Du H L, Yin N Y, Cai X L, et al. Lead bioaccessibility in farming and mining soils:The influence of soil properties, types and human gut microbiota[J]. The Science of the Total Environment, 2020, 708:135227
    Ruttens A, Blanpain A C, De Temmerman L, et al. Arsenic speciation in food in Belgium[J]. Journal of Geochemical Exploration, 2012, 121:55-61
    Sharafi K, Yunesian M, Nodehi R N, et al. The reduction of toxic metals of various rice types by different preparation and cooking processes:Human health risk assessment in Tehran households, Iran[J]. Food Chemistry, 2019, 280:294-302
    Wang L H, Gao S L, Yin X X, et al. Arsenic accumulation, distribution and source analysis of rice in a typical growing area in North China[J]. Ecotoxicology and Environmental Safety, 2019, 167:429-434
    Clemente M J, Cimbalo A, Chiocchetti G, et al. Dietary compounds to reduce in vivo inorganic arsenic bioavailability[J]. Journal of Agricultural and Food Chemistry, 2019, 67(32):9032-9038
    Clemente M J, Devesa V, Vélez D. Dietary strategies to reduce the bioaccessibility of arsenic from food matrices[J]. Journal of Agricultural and Food Chemistry, 2016, 64(4):923-931
    Wang P F, Yin N Y, Cai X L, et al. Comparison of bioaccessibility and relative bioavailability of arsenic in rice bran:The in vitro with PBET/SHIME and in vivo with mice model[J]. Chemosphere, 2020, 259:127443
    Mohan D, Pittman C U Jr. Arsenic removal from water/wastewater using adsorbents:A critical review[J]. Journal of Hazardous Materials, 2007, 142(1-2):1-53
    Yu H Y, Wu B, Zhang X X, et al. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut Microbiota[J]. Environmental Science & Technology, 2016, 50(13):7189-7197
    Subacz J L, Barnett M O, Jardine P M, et al. Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(9):1317-1329
    Impellitteri C A. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site[J]. The Science of the Total Environment, 2005, 345(1-3):175-190
    Villa-Bellosta R, Sorribas V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate[J]. Toxicology and Applied Pharmacology, 2008, 232(1):125-134
    Oomen A G, Hack A, Minekus M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental Science & Technology, 2002, 36(15):3326-3334
    Mohapatra D, Mishra D, Rout M, et al. Adsorption kinetics of natural dissolved organic matter and its impact on arsenic(V) leachability from arsenic-loaded ferrihydrite and Al-ferrihydrite[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(1):81-88
    Moreda-Piñeiro J, Alonso-Rodríguez E, Romarís-Hortas V, et al. Assessment of the bioavailability of toxic and non-toxic arsenic species in seafood samples[J]. Food Chemistry, 2012, 130(3):552-560
    Laird B D, Yeung J, Peak D, et al. Nutritional status and gastrointestinal microbes affect arsenic bioaccessibility from soils and mine tailings in the simulator of the human intestinal microbial ecosystem[J]. Environmental Science & Technology, 2009, 43(22):8652-8657
    Kim E J, Lee J C, Baek K. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation:Arsenic extraction by reducing agents and combination of reducing and chelating agents[J]. Journal of Hazardous Materials, 2015, 283:454-461
    Narukawa T, Chiba K. Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis[J]. Journal of Agricultural and Food Chemistry, 2010, 58(14):8183-8188
    Clemente M J, Devesa V, Vélez D. In vitro reduction of arsenic bioavailability using dietary strategies[J]. Journal of Agricultural and Food Chemistry, 2017, 65(19):3956-3964
    Sun G X, van de Wiele T, Alava P, et al. Arsenic in cooked rice:Effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract[J]. Environmental Pollution, 2012, 162:241-246
    Yin N Y, Cai X L, Du H L, et al. In vitro study of soil arsenic release by human gut microbiota and its intestinal absorption by Caco-2 cells[J]. Chemosphere, 2017, 168:358-364
    Yin N Y, Wang P F, Li Y, et al. Arsenic in rice bran products:In vitro oral bioaccessibility, arsenic transformation by human gut Microbiota, and human health risk assessment[J]. Journal of Agricultural and Food Chemistry, 2019, 67(17):4987-4994
    Wang L H, Yin X X, Gao S L, et al. In vitro oral bioaccessibility investigation and human health risk assessment of heavy metals in wheat grains grown near the mines in North China[J]. Chemosphere, 2020, 252:126522
    Laird B D, Peak D, Siciliano S D. Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant[J]. Environmental Science & Technology, 2011, 45(9):4139-4144
    Pokrovsky O S, Schott J. Surface chemistry and dissolution kinetics of divalent metal carbonates[J]. Environmental Science & Technology, 2002, 36(3):426-432
    Hu L, Wang X L, Wu D S, et al. Effects of organic selenium on absorption and bioaccessibility of arsenic in radish under arsenic stress[J]. Food Chemistry, 2021, 344:128614
    Tramontano M, Andrejev S, Pruteanu M, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies[J]. Nature Microbiology, 2018, 3(4):514-522
    Chiu K, Warner G, Nowak R A, et al. The impact of environmental chemicals on the gut microbiome[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2020, 176(2):253-284
    David L A, Maurice C F, Carmody R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484):559-563
    Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species[J]. Cell, 2015, 160(4):583-594
    Yang Y F, Chi L, Lai Y J, et al. The gut microbiome and arsenic-induced disease-iAs metabolism in mice[J]. Current Environmental Health Reports, 2021, 8(2):89-97
    Alava P, Tack F, Laing G D, et al. Arsenic undergoes significant speciation changes upon incubation of contaminated rice with human colon micro biota[J]. Journal of Hazardous Materials, 2013, 262:1237-1244
    Fu Y Q, Yin N Y, Cai X L, et al. Arsenic speciation and bioaccessibility in raw and cooked seafood:Influence of seafood species and gut microbiota[J]. Environmental Pollution, 2021, 280:116958
  • 加载中
计量
  • 文章访问数:  4394
  • HTML全文浏览数:  4394
  • PDF下载数:  101
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-17
张述习, 蒋喜艳, 田勇, 乔国栋, 彭晓瑛, 刘媛媛, 邓智文, 尹西翔, 王利红. 土壤和食物中砷生物可给性与生物有效性研究进展[J]. 生态毒理学报, 2022, 17(5): 239-250. doi: 10.7524/AJE.1673-5897.20211117003
引用本文: 张述习, 蒋喜艳, 田勇, 乔国栋, 彭晓瑛, 刘媛媛, 邓智文, 尹西翔, 王利红. 土壤和食物中砷生物可给性与生物有效性研究进展[J]. 生态毒理学报, 2022, 17(5): 239-250. doi: 10.7524/AJE.1673-5897.20211117003
Zhang Shuxi, Jiang Xiyan, Tian Yong, Qiao Guodong, Peng Xiaoying, Liu Yuanyuan, Deng Zhiwen, Yin Xixiang, Wang Lihong. Research Progress of Arsenic Bio-accessibility and Bioavailability in Soils and Foods[J]. Asian journal of ecotoxicology, 2022, 17(5): 239-250. doi: 10.7524/AJE.1673-5897.20211117003
Citation: Zhang Shuxi, Jiang Xiyan, Tian Yong, Qiao Guodong, Peng Xiaoying, Liu Yuanyuan, Deng Zhiwen, Yin Xixiang, Wang Lihong. Research Progress of Arsenic Bio-accessibility and Bioavailability in Soils and Foods[J]. Asian journal of ecotoxicology, 2022, 17(5): 239-250. doi: 10.7524/AJE.1673-5897.20211117003

土壤和食物中砷生物可给性与生物有效性研究进展

    通讯作者: 尹西翔, E-mail: jnhbjyinxixiang@jn.shandong.cn ;  王利红, E-mail: wanglihong@qlu.edu.cn
    作者简介: 张述习(1998-),男,硕士研究生,研究方向为环境毒理学,E-mail:10431201110@stu.qlu.edu.cn
  • 1. 齐鲁工业大学(山东省科学院), 山东省分析测试中心, 济南 250014;
  • 2. 山东省济南生态环境监测中心, 济南 250101
基金项目:

国家自然科学基金面上项目(41671485);山东省自然科学基金面上项目(ZR2017MD008);山东省博士基金资助项目(BS2013HZ009)

摘要: 砷是一种环境中广泛存在致癌元素。土壤中的砷污染不仅会影响作物的产量和质量,而且还可通过食物链扩散到人体,严重威胁人类健康。近些年来,研究人员对砷生物有效性和可给性开展了系列相关研究。本文对重金属砷的来源与危害进行了归纳;对砷生物可给性与生物有效性的概念及两者之间的联系进行了总结;对in vivo、Caco-2细胞模型以及7种in vitro方法进行了分析概括;总结分析了不同因素(砷浓度及其形态、矿物质元素、营养状态和结肠微生物等)对土壤和食物中砷生物可给性和生物有效性产生的影响。最后,本文对未来砷生物有效性与可给性的评估及砷污染机制探索工作进行了展望,提出标准化体外胃肠模型的应用将使砷健康风险评估结果更为可靠。

English Abstract

参考文献 (104)

返回顶部

目录

/

返回文章
返回