中华人民共和国环境保护部,中华人民共和国国土资源部. 全国土壤污染状况调查公报[R]. 北京:中华人民共和国环境保护部, 中华人民共和国国土资源部, 2014
|
Oves M, Khan M S, Zaidi A, et al. Soil contamination, nutritive value, and human health risk assessment of heavy metals:An overview[M]//Toxicity of Heavy Metals to Legumes and Bioremediation. Vienna:Springer Vienna, 2012:1-27
|
陈怀满, 郑春荣, 涂从, 等. 中国土壤重金属污染现状与防治对策[J]. AMBIO-人类环境杂志, 1999, 28(2):130-134
, 207 Chen H M, Zheng C R, Tu C, et al. Heavy metal pollution in soils in Chian:Status and countermeasures[J]. AMBIO-A Journal of the Hunman Environment, 1999, 28(2):130-134, 207(in Chinese)
|
Vodyanitskii Y N. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review)[J]. Eurasian Soil Science, 2013, 46(7):793-801
|
Dong W Q Y, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination:An International Journal, 2001, 10(5):497-510
|
Bhattacharya P, Welch A H, Stollenwerk K G, et al. Arsenic in the environment:Biology and chemistry[J]. Science of the Total Environment, 2007, 379(2-3):109-120
|
Jomova K, Jenisova Z, Feszterova M, et al. Arsenic:Toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology:JAT, 2011, 31(2):95-107
|
US EPA National Center for Environmental Assessment, Exposure Analysis Group. Child-Specific Exposure Factors Handbook[R]. Washington DC:US EPA National Center for Environmental Assessment, Exposure Analysis and Risk Characterization Group, 2002
|
Zhu Y G, Sun G X, Lei M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science & Technology, 2008, 42(13):5008-5013
|
Ljung K, Selinus O, Otabbong E, et al. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children[J]. Applied Geochemistry, 2006, 21(9):1613-1624
|
Su Y H, McGrath S, Zhao F. Rice is more efficient in arsenite uptake and translocation than wheat and barley[J]. Plant and Soil, 2010, 328:27-34
|
Williams P N, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science & Technology, 2007, 41(19):6854-6859
|
Chen H P, Tang Z, Wang P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238:482-490
|
Arao T, Kawasaki A, Baba K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology, 2009, 43(24):9361-9367
|
Signes-Pastor A J, Carey M, Meharg A A. Inorganic arsenic removal in rice bran by percolating cooking water[J]. Food Chemistry, 2017, 234:76-80
|
Ruangwises S, Saipan P, Tengjaroenkul B, et al. Total and inorganic arsenic in rice and rice bran purchased in Thailand[J]. Journal of Food Protection, 2012, 75(4):771-774
|
Sun G X, Williams P N, Carey A M, et al. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain[J]. Environmental Science & Technology, 2008, 42(19):7542-7546
|
Twaddle N C, Vanlandingham M, Beland F A, et al. Metabolism and disposition of arsenic species after repeated oral dosing with sodium arsenite in drinking water. Ⅱ. Measurements in pregnant and fetal CD-1 mice[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2018, 115:178-184
|
Brahman K D, Kazi T G, Afridi H I, et al. Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan[J]. The Science of the Total Environment, 2016, 544:653-660
|
Cheyns K, Waegeneers N, van de Wiele T, et al. Arsenic release from foodstuffs upon food preparation[J]. Journal of Agricultural and Food Chemistry, 2017, 65(11):2443-2453
|
Wang X, Geng A J, Dong Y, et al. Comparison of translocation and transformation from soil to rice and metabolism in rats for four arsenic species[J]. Journal of Agricultural and Food Chemistry, 2017, 65(41):8992-8998
|
Molin M, Ulven S M, Meltzer H M, et al. Arsenic in the human food chain, biotransformation and toxicology:Review focusing on seafood arsenic[J]. Journal of Trace Elements in Medicine and Biology:Organ of the Society for Minerals and Trace Elements (GMS), 2015, 31:249-259
|
Alava P, Tack F, Laing G D, et al. Arsenic undergoes significant speciation changes upon incubation of contaminated rice with human colon micro biota[J]. Journal of Hazardous Materials, 2013, 262:1237-1244
|
Sun H J, Rathinasabapathi B, Wu B, et al. Arsenic and selenium toxicity and their interactive effects in humans[J]. Environment International, 2014, 69:148-158
|
Calatayud M, Devesa V, Vélez D. Differential toxicity and gene expression in Caco-2 cells exposed to arsenic species[J]. Toxicology Letters, 2013, 218(1):70-80
|
Leffers L, Wehe C A, Hüwel S, et al. In vitro intestinal bioavailability of arsenosugar metabolites and presystemic metabolism of thio-dimethylarsinic acid in Caco-2 cells[J]. Metallomics:Integrated Biometal Science, 2013, 5(8):1031-1042
|
Leffers L, Ebert F, Taleshi M S, et al. In vitro toxicological characterization of two arsenosugars and their metabolites[J]. Molecular Nutrition & Food Research, 2013, 57(7):1270-1282
|
Hirner A V, Hartmann L M, Hippler J, et al. Organometal(loid) Compounds Associated with Human Metabolism[M]//Organic Metal and Metalloid Species in the Environment. Berlin, Heidelberg:Springer Berlin Heidelberg, 2004:181-203
|
Majumdar S, Maiti A, Karmakar S, et al. Antiapoptotic efficacy of folic acid and vitamin B12 against arsenic-induced toxicity[J]. Environmental Toxicology, 2012, 27(6):351-363
|
Herrera A, Pineda J, Antonio M T. Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants[J]. Environmental Toxicology and Pharmacology, 2013, 36(1):73-79
|
Van de Wiele T, Gallawa C M, Kubachka K M, et al. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils[J]. Environmental Health Perspectives, 2010, 118(7):1004-1009
|
Rodriguez R R, Basta N T, Casteel S W, et al. An In vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental Science & Technology, 1999, 33(4):642-649
|
Juhasz A L, Weber J, Smith E, et al. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils[J]. Environmental Science & Technology, 2009, 43(24):9487-9494
|
Li J, Li K, Cui X Y, et al. In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils:Method comparison and method development[J]. The Science of the Total Environment, 2015, 532:812-820
|
郑小曼. 叶菜类蔬菜中砷的生物有效性研究[D]. 南宁:广西大学, 2017:33-39 Zheng X M. Bioavailability of arsenic in leafy vegetables[D]. Nanning:Guangxi University, 2017:33
-39(in Chinese)
|
Wang P F, Yin N Y, Cai X L, et al. Comparison of bioaccessibility and relative bioavailability of arsenic in rice bran:The in vitro with PBET/SHIME and in vivo with mice model[J]. Chemosphere, 2020, 259:127443
|
Li J, Chen S, Li H B, et al. Arsenic bioaccessibility in rice grains via modified physiologically-based extraction test (MPBET):Correlation with mineral elements and comparison with As relative bioavailability[J]. Environmental Research, 2021, 198:111198
|
Wang P F, Yin N Y, Cai X L, et al. Assessment of arsenic distribution, bioaccessibility and speciation in rice utilizing continuous extraction and in vitro digestion[J]. Food Chemistry, 2021, 346:128969
|
van de Wiele T R, Oomen A G, Wragg J, et al. Comparison of five in vitro digestion models to in vivo experimental results:Lead bioaccessibility in the human gastrointestinal tract[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(9):1203-1211
|
Juhasz A L, Smith E, Weber J, et al. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment[J]. Environmental Health Perspectives, 2006, 114(12):1826-1831
|
Li H B, Li M Y, Zhao D, et al. Oral bioavailability of As, Pb, and Cd in contaminated soils, dust, and foods based on animal bioassays:A review[J]. Environmental Science & Technology, 2019, 53(18):10545-10559
|
蔡美芳, 吴仁人, 李开明, 等. 植物性食物中重金属生物可利用性研究进展[J]. 环境科学与技术, 2014, 37(11):99-104
Cai M F, Wu R R, Li K M, et al. Bioavailability of heavy metals in vegetable food grown in contaminated soils[J]. Environmental Science & Technology, 2014, 37(11):99-104(in Chinese)
|
Yin N Y, Zhao Y L, Wang P F, et al. Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils[J]. Environmental Pollution, 2021, 279:116943
|
王振洲, 崔岩山, 张震南, 等. Caco-2细胞模型评估金属人体生物有效性的研究进展[J]. 生态毒理学报, 2014, 9(6):1027-1034
Wang Z Z, Cui Y S, Zhang Z N, et al. Evaluation on the human bioavailability of metals using Caco-2 cell model:A review[J]. Asian Journal of Ecotoxicology, 2014, 9(6):1027-1034(in Chinese)
|
张东平, 余应新, 张帆, 等. 环境污染物对人体生物有效性测定的胃肠模拟研究现状[J]. 科学通报, 2008, 53(21):2537-2545
Zhang D P, Yu Y X, Zhang F, et al. Current status of gastrointestinal simulation research on determination of bioavailability of environmental pollutants to human body[J]. Chinese Science Bulletin, 2008, 53(21):2537-2545(in Chinese)
|
Vázquez M, Devesa V, Vélez D. Characterization of the intestinal absorption of inorganic mercury in Caco-2 cells[J]. Toxicology in Vitro, 2015, 29(1):93-102
|
Li M Y, Wang P, Wang J Y, et al. Arsenic concentrations, speciation, and localization in 141 cultivated market mushrooms:Implications for arsenic exposure to humans[J]. Environmental Science & Technology, 2019, 53(1):503-511
|
Juhasz A L, Smith E, Nelson C, et al. Variability associated with as in vivo-in vitro correlations when using different bioaccessibility methodologies[J]. Environmental Science & Technology, 2014, 48(19):11646-11653
|
Bradham K D, Scheckel K G, Nelson C M, et al. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils[J]. Environmental Health Perspectives, 2011, 119(11):1629-1634
|
Bradham K D, Diamond G L, Scheckel K G, et al. Mouse assay for determination of arsenic bioavailability in contaminated soils[J]. Journal of Toxicology and Environmental Health Part A, 2013, 76(13):815-826
|
Li S W, Sun H J, Wang G, et al. Lead relative bioavailability in soils based on different endpoints of a mouse model[J]. Journal of Hazardous Materials, 2017, 326:94-100
|
Mandal B K, Ogra Y, Suzuki K T. Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in west Bengal, India[J]. Chemical Research in Toxicology, 2001, 14(4):371-378
|
Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94:600-606
|
Calatayud M, Barrios J A, Vélez D, et al. In vitro study of transporters involved in intestinal absorption of inorganic arsenic[J]. Chemical Research in Toxicology, 2012, 25(2):446-453
|
Calatayud M, Gimeno J, Vélez D, et al. Characterization of the intestinal absorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid using the Caco-2 cell line[J]. Chemical Research in Toxicology, 2010, 23(3):547-556
|
崔岩山, 陈晓晨, 付瑾. 污染土壤中铅、砷的生物可给性研究进展[J]. 生态环境学报, 2010, 19(2):480-486
Cui Y S, Chen X C, Fu J. Progress in study of bioaccessibility of lead and arsenic in contaminated soils[J]. Ecology and Environmental Sciences, 2010, 19(2):480-486(in Chinese)
|
Van de Wiele T R, Verstraete W, Siciliano S D. Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract[J]. Journal of Environmental Quality, 2004, 33(4):1343-1353
|
Tang X Y, Zhu Y G, Cui Y S, et al. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China[J]. Environment International, 2006, 32(5):682-689
|
Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. The Science of the Total Environment, 2011, 409(19):4016-4030
|
Lu K, Cable P H, Abo R P, et al. Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation[J]. Chemical Research in Toxicology, 2013, 26(12):1893-1903
|
Yin N Y, Zhang Z N, Cai X L, et al. In vitro method to assess soil arsenic metabolism by human gut Microbiota:Arsenic speciation and distribution[J]. Environmental Science & Technology, 2015, 49(17):10675-10681
|
Ruby M V, Davis A, Link T E, et al. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead[J]. Environmental Science & Technology, 1993, 27(13):2870-2877
|
Oomen A G, Hack A, Minekus M, et al. Comparison of five In vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental Science & Technology, 2002, 36(15):3326-3334
|
Ljung K, Oomen A, Duits M, et al. Bioaccessibility of metals in urban playground soils[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(9):1241-1250
|
Minekus M, Smeets-Peeters M, Bernalier A, et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products[J]. Applied Microbiology and Biotechnology, 1999, 53(1):108-114
|
Hack A, Selenka F. Mobilization of PAH and PCB from contaminated soil using a digestive tract model[J]. Toxicology Letters, 1996, 88(1-3):199-210
|
Medlin E A. An in vitro method for estimating the relative bioavailability of lead in humans[D]. Colorado:University of Colorado, 1997, 23(3):243-249
|
Van de Wiele T, Vanhaecke L, Boeckaert C, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites[J]. Environmental Health Perspectives, 2005, 113(1):6-10
|
Yin N Y, Du H L, Wang P F, et al. Interindividual variability of soil arsenic metabolism by human gut microbiota using SHIME model[J]. Chemosphere, 2017, 184:460-466
|
尹乃毅, 都慧丽, 张震南, 等. 应用SHIME模型研究肠道微生物对土壤中镉、铬、镍生物可给性的影响[J]. 环境科学, 2016, 37(6):2353-2358
Yin N Y, Du H L, Zhang Z N, et al. Effects of human gut Microbiota on bioaccessibility of soil Cd, Cr and Ni using SHIME model[J]. Environmental Science, 2016, 37(6):2353-2358(in Chinese)
|
Wang P F, Yin N Y, Cai X L, et al. Nutritional status affects the bioaccessibility and speciation of arsenic from soils in a simulator of the human intestinal microbial ecosystem[J]. The Science of the Total Environment, 2018, 644:815-821
|
Du H L, Yin N Y, Cai X L, et al. Lead bioaccessibility in farming and mining soils:The influence of soil properties, types and human gut microbiota[J]. The Science of the Total Environment, 2020, 708:135227
|
Ruttens A, Blanpain A C, De Temmerman L, et al. Arsenic speciation in food in Belgium[J]. Journal of Geochemical Exploration, 2012, 121:55-61
|
Sharafi K, Yunesian M, Nodehi R N, et al. The reduction of toxic metals of various rice types by different preparation and cooking processes:Human health risk assessment in Tehran households, Iran[J]. Food Chemistry, 2019, 280:294-302
|
Wang L H, Gao S L, Yin X X, et al. Arsenic accumulation, distribution and source analysis of rice in a typical growing area in North China[J]. Ecotoxicology and Environmental Safety, 2019, 167:429-434
|
Clemente M J, Cimbalo A, Chiocchetti G, et al. Dietary compounds to reduce in vivo inorganic arsenic bioavailability[J]. Journal of Agricultural and Food Chemistry, 2019, 67(32):9032-9038
|
Clemente M J, Devesa V, Vélez D. Dietary strategies to reduce the bioaccessibility of arsenic from food matrices[J]. Journal of Agricultural and Food Chemistry, 2016, 64(4):923-931
|
Wang P F, Yin N Y, Cai X L, et al. Comparison of bioaccessibility and relative bioavailability of arsenic in rice bran:The in vitro with PBET/SHIME and in vivo with mice model[J]. Chemosphere, 2020, 259:127443
|
Mohan D, Pittman C U Jr. Arsenic removal from water/wastewater using adsorbents:A critical review[J]. Journal of Hazardous Materials, 2007, 142(1-2):1-53
|
Yu H Y, Wu B, Zhang X X, et al. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut Microbiota[J]. Environmental Science & Technology, 2016, 50(13):7189-7197
|
Subacz J L, Barnett M O, Jardine P M, et al. Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(9):1317-1329
|
Impellitteri C A. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site[J]. The Science of the Total Environment, 2005, 345(1-3):175-190
|
Villa-Bellosta R, Sorribas V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate[J]. Toxicology and Applied Pharmacology, 2008, 232(1):125-134
|
Oomen A G, Hack A, Minekus M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental Science & Technology, 2002, 36(15):3326-3334
|
Mohapatra D, Mishra D, Rout M, et al. Adsorption kinetics of natural dissolved organic matter and its impact on arsenic(V) leachability from arsenic-loaded ferrihydrite and Al-ferrihydrite[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(1):81-88
|
Moreda-Piñeiro J, Alonso-Rodríguez E, Romarís-Hortas V, et al. Assessment of the bioavailability of toxic and non-toxic arsenic species in seafood samples[J]. Food Chemistry, 2012, 130(3):552-560
|
Laird B D, Yeung J, Peak D, et al. Nutritional status and gastrointestinal microbes affect arsenic bioaccessibility from soils and mine tailings in the simulator of the human intestinal microbial ecosystem[J]. Environmental Science & Technology, 2009, 43(22):8652-8657
|
Kim E J, Lee J C, Baek K. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation:Arsenic extraction by reducing agents and combination of reducing and chelating agents[J]. Journal of Hazardous Materials, 2015, 283:454-461
|
Narukawa T, Chiba K. Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis[J]. Journal of Agricultural and Food Chemistry, 2010, 58(14):8183-8188
|
Clemente M J, Devesa V, Vélez D. In vitro reduction of arsenic bioavailability using dietary strategies[J]. Journal of Agricultural and Food Chemistry, 2017, 65(19):3956-3964
|
Sun G X, van de Wiele T, Alava P, et al. Arsenic in cooked rice:Effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract[J]. Environmental Pollution, 2012, 162:241-246
|
Yin N Y, Cai X L, Du H L, et al. In vitro study of soil arsenic release by human gut microbiota and its intestinal absorption by Caco-2 cells[J]. Chemosphere, 2017, 168:358-364
|
Yin N Y, Wang P F, Li Y, et al. Arsenic in rice bran products:In vitro oral bioaccessibility, arsenic transformation by human gut Microbiota, and human health risk assessment[J]. Journal of Agricultural and Food Chemistry, 2019, 67(17):4987-4994
|
Wang L H, Yin X X, Gao S L, et al. In vitro oral bioaccessibility investigation and human health risk assessment of heavy metals in wheat grains grown near the mines in North China[J]. Chemosphere, 2020, 252:126522
|
Laird B D, Peak D, Siciliano S D. Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant[J]. Environmental Science & Technology, 2011, 45(9):4139-4144
|
Pokrovsky O S, Schott J. Surface chemistry and dissolution kinetics of divalent metal carbonates[J]. Environmental Science & Technology, 2002, 36(3):426-432
|
Hu L, Wang X L, Wu D S, et al. Effects of organic selenium on absorption and bioaccessibility of arsenic in radish under arsenic stress[J]. Food Chemistry, 2021, 344:128614
|
Tramontano M, Andrejev S, Pruteanu M, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies[J]. Nature Microbiology, 2018, 3(4):514-522
|
Chiu K, Warner G, Nowak R A, et al. The impact of environmental chemicals on the gut microbiome[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2020, 176(2):253-284
|
David L A, Maurice C F, Carmody R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484):559-563
|
Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species[J]. Cell, 2015, 160(4):583-594
|
Yang Y F, Chi L, Lai Y J, et al. The gut microbiome and arsenic-induced disease-iAs metabolism in mice[J]. Current Environmental Health Reports, 2021, 8(2):89-97
|
Alava P, Tack F, Laing G D, et al. Arsenic undergoes significant speciation changes upon incubation of contaminated rice with human colon micro biota[J]. Journal of Hazardous Materials, 2013, 262:1237-1244
|
Fu Y Q, Yin N Y, Cai X L, et al. Arsenic speciation and bioaccessibility in raw and cooked seafood:Influence of seafood species and gut microbiota[J]. Environmental Pollution, 2021, 280:116958
|