多溴联苯醚在肝脏中的残留代谢及毒性作用研究进展
Research Progress in Residual Metabolism and Hepatotoxicity of Polybrominated Diphenyl Ethers (PBDEs)
-
摘要: 多溴联苯醚(polybrominated diphenyl ethers,PBDEs)是一类具有亲脂性、难降解、易沉积和高生物毒性的持久性有机污染物,在全球范围常被用作添加型溴代阻燃剂。近年来,PBDEs广泛暴露于环境介质和生命体内(植物、动物、人体)内,对生态环境和人类健康造成巨大的安全风险,引起机体多个器官的毒性作用。其中肝脏是PBDEs代谢及其毒性攻击的主要靶标器官之一,已有资料证明PBDEs易积聚在肝脏中,发生氧化脱溴、还原脱溴或CYP酶介导的生物转化等。故本文围绕PBDEs在肝脏中的污染暴露、代谢转化、毒性作用及致毒机理等方面进行综述,旨在为深入探索PBDEs的肝毒性相关研究提供科学的理论依据。Abstract: Polybrominated diphenyl ethers (PBDEs) are one group of persistent organic pollutants (POPs) with the nature of high lipophilicity, difficult degradation, easy bioaccumulation and high biotoxicity, which have been widely used as an additive flame retardant all over the world. Recently, the various environmental matrices and organisms (animals and plants, and the human body) have been frequently exposed to PBDEs, and bring the huge potential risks for ecological environment and human health. Additionally, the serious toxicity of several organs is observed after exposure to PBDEs, and the liver is one of the main toxic target organs which responsible for the metabolism of PBDEs. Accumulated information demonstrated that PBDEs are easily accumulated in the liver, and can be degraded to other brominated derivatives through debrominated reductive or oxidative metabolism, and the biotransformation process is mediated by CYP enzymes. In this study, the pollution exposure, metabolic transformation, toxic effect and mechanism of PBDEs in the liver were reviewed, which is aimed to provide a scientific basis for further exploration of hepatotoxicity about PBDEs.
-
Key words:
- polybrominated diphenyl ethers /
- liver toxicity /
- metabolism /
- research progress
-
-
郭楠楠, 孟顺龙, 陈家长. 多溴联苯醚在环境中的残留及毒理学效应研究进展[J]. 中国农学通报, 2019, 35(25):159-164 Guo N N, Meng S L, Chen J Z. Polybrominated biphenyl ethers:Residual in the environment and research progress on toxicological effects[J]. Chinese Agricultural Science Bulletin, 2019, 35(25):159-164(in Chinese)
Alaee M, Arias P, Sjödin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environment International, 2003, 29(6):683-689 Ross P S, Couillard C M, Ikonomou M G, et al. Large and growing environmental reservoirs of Deca-BDE present an emerging health risk for fish and marine mammals[J]. Marine Pollution Bulletin, 2009, 58(1):7-10 Wu Z N, He C, Han W, et al. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans:A review[J]. Environmental Research, 2020, 187:109531 DeCarlo V J. Studies on brominated chemicals in the environment[J]. Annals of the New York Academy of Sciences, 1979, 320(1 Health Effect):678-681 Norén K, Meironyté D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years[J]. Chemosphere, 2000, 40(9-11):1111-1123 McDonald T A. A perspective on the potential health risks of PBDEs[J]. Chemosphere, 2002, 46(5):745-755 de Boer J, Wester P G, van der Horst A, et al. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands[J]. Environmental Pollution, 2003, 122(1):63-74 Sellström U, de Wit C A, Lundgren N, et al. Effect of sewage-sludge application on concentrations of higher-brominated diphenyl ethers in soils and earthworms[J]. Environmental Science & Technology, 2005, 39(23):9064-9070 Muir D C G, Backus S, Derocher A E, et al. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard[J]. Environmental Science & Technology, 2006, 40(2):449-455 张娴, 高亚杰, 颜昌宙. 多溴联苯醚在环境中迁移转化的研究进展[J]. 生态环境学报, 2009, 18(2):761-770 Zhang X, Gao Y J, Yan C Z. Advance in researches on the transport and transformation of polybrominated diphenyl ethers in environment[J]. Ecology and Environmental Sciences, 2009, 18(2):761-770(in Chinese)
Johnson P I, Stapleton H M, Mukherjee B, et al. Associations between brominated flame retardants in house dust and hormone levels in men[J]. The Science of the Total Environment, 2013, 445-446:177-184 Costa L G, de Laat R, Tagliaferri S, et al. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity[J]. Toxicology Letters, 2014, 230(2):282-294 Cao L Y, Zheng Z Y, Ren X M, et al. Structure-dependent activity of polybrominated diphenyl ethers and their hydroxylated metabolites on estrogen related receptor γ:in vitro and in silico study[J]. Environmental Science & Technology, 2018, 52(15):8894-8902 Kuriyama S N, Wanner A, Fidalgo-Neto A A, et al. Developmental exposure to low-dose PBDE-99:Tissue distribution and thyroid hormone levels[J]. Toxicology, 2007, 242(1-3):80-90 Herbstman J B, Sjödin A, Kurzon M, et al. Prenatal exposure to PBDEs and neurodevelopment[J]. Environmental Health Perspectives, 2010, 118(5):712-719 Stapleton H M, Kelly S M, Pei R T, et al. Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro[J]. Environmental Health Perspectives, 2009, 117(2):197-202 Sanders J M, Chen L J, Lebetkin E H, et al. Metabolism and disposition of 2,2',4,4'-tetrabromodiphenyl ether following administration of single or multiple doses to rats and mice[J]. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 2006, 36(1):103-117 Staskal D F, Diliberto J J, Birnbaum L S. Impact of repeated exposure on the toxicokinetics of BDE 47 in mice[J]. Toxicological Sciences, 2005, 89(2):380-385 Wang J X, Bao L J, Luo P, et al. Intake, distribution, and metabolism of decabromodiphenyl ether and its main metabolites in chickens and implications for human dietary exposure[J]. Environmental Pollution, 2017, 231(Pt 1):795-801 Luo Q, Cai Z W, Wong M H. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste[J]. Science of the Total Environment, 2007, 383(1-3):115-127 Xian Q M, Ramu K, Isobe T, et al. Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China[J]. Chemosphere, 2008, 71(2):268-276 Erratico C A, Szeitz A, Bandiera S M. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes:Identification of cytochrome P4502B6 as the major enzyme involved[J]. Chemical Research in Toxicology, 2013, 26(5):721-731 Li J H, Chen Y, Xiao W J. Polybrominated diphenyl ethers in articles:A review of its applications and legislation[J]. Environmental Science and Pollution Research International, 2017, 24(5):4312-4321 Abbasi G, Li L, Breivik K. Global historical stocks and emissions of PBDEs[J]. Environmental Science & Technology, 2019, 53(11):6330-6340 Geyer H J, Schramm K W, Per O, et al. Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans[C]. Berlin (Germany):U.S. Department of Energy Office of Scientific and Technical Information, 2004:3820-3825 Zota A R, Mitro S D, Robinson J F, et al. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression[J]. Environment International, 2018, 112:269-278 Sinkkonen S, Rantalainen A L, Paasivirta J, et al. Polybrominated methoxy diphenyl ethers (MeO-PBDEs) in fish and guillemot of Baltic, Atlantic and Arctic environments[J]. Chemosphere, 2004, 56(8):767-775 Cantón R F, Scholten D E A, Marsh G, et al. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs)[J]. Toxicology and Applied Pharmacology, 2008, 227(1):68-75 Pohl H R, Odin M, McClure P R, et al. Toxicological profile for polybrominated diphenyl ethers (PBDEs)[R]. Washington DC:U.S. Department of Health and Human Services, 2017:43-297 Yang J, Zhu J Y, Chan K M. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells[J]. Toxicology and Applied Pharmacology, 2016, 305:203-215 Sanders J M, Burka L T, Smith C S, et al. Differential expression of CYP1A, 2B, and 3A genes in the F344 rat following exposure to a polybrominated diphenyl ether mixture or individual components[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2005, 88(1):127-133 McKinney M A, De Guise S, Martineau D, et al. Biotransformation of polybrominated diphenyl ethers and polychlorinated biphenyls in Beluga whale (Delphinapterus leucas) and rat mammalian model using an in vitro hepatic microsomal assay[J]. Aquatic Toxicology, 2006, 77(1):87-97 Hakk H, Letcher R J. Metabolism in the toxicokinetics and fate of brominated flame retardants:A review[J]. Environment International, 2003, 29(6):801-828 Luo Y L, Luo X J, Ye M X, et al. Species-specific and structure-dependent debromination of polybrominated diphenyl ether in fish by in vitro hepatic metabolism[J]. Environmental Toxicology and Chemistry, 2017, 36(8):2005-2011 van den Steen E, Covaci A, Jaspers V L, et al. Accumulation, tissue-specific distribution and debromination of decabromodiphenyl ether (BDE 209) in European starlings (Sturnus vulgaris)[J]. Environmental Pollution, 2007, 148(2):648-653 Erratico C A, Moffatt S C, Bandiera S M. Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes[J]. Toxicological Sciences, 2011, 123(1):37-47 Dunnick J K, Nyska A. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers[J]. Experimental and Toxicologic Pathology, 2009, 61(1):1-12 Sun Y M, Wang Y W, Liang B L, et al. Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats[J]. Science of the Total Environment, 2020, 705:135783 Alonso V, Linares V, Bellés M, et al. Effects of BDE-99 on hormone homeostasis and biochemical parameters in adult male rats[J]. Food and Chemical Toxicology, 2010, 48(8-9):2206-2211 王兴华. 十溴联苯醚对小鼠肝脏组织的氧化应激水平及细胞色素C表达水平影响的研究[D]. 合肥:安徽医科大学, 2012:49-53 Wang X H. Study on the effects of decabromodiphenylether on oxidative stress and the expression of cytochrome C in mice liver[D]. Hefei:Anhui Medical University, 2012:49 -53(in Chinese)
Mottaran E, Stewart S F, Rolla R, et al. Lipid peroxidation contributes to immune reactions associated with alcoholic liver disease[J]. Free Radical Biology & Medicine, 2002, 32(1):38-45 Wang L L, Zou W, Zhong Y F, et al. The hormesis effect of BDE-47 in HepG2 cells and the potential molecular mechanism[J]. Toxicology Letters, 2012, 209(2):193-201 Tang S Y, Liu H, Yin H, et al. Effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its metabolites on cell viability, oxidative stress, and apoptosis of HepG2[J]. Chemosphere, 2018, 193:978-988 吴伟, 聂凤琴, 瞿建宏. 多溴联苯醚对鲫鱼离体肝脏组织中CAT和GSH-Px的影响[J]. 生态环境学报, 2009, 18(2):408-413 Wu W, Nie F Q, Qu J H. The in vitro effects of tetrabromodiphenyl ether and decabromodiphenyl ether on the activities of catalase and glutathione peroxidase in the liver of Carassius auratus[J]. Ecology and Environmental Sciences, 2009, 18(2):408-413(in Chinese)
Zhao A J, Liu H Q, Zhang A N, et al. Effect of BDE-209 on glutathione system in Carassius auratus[J]. Environmental Toxicology and Pharmacology, 2011, 32(1):35-39 Wang Y H, Wu S S, Chen Z C, et al. Inhibitory effects of cytochrome P450 enzymes CYP1A2, CYP2A6, CYP2E1 and CYP3A4 by extracts and alkaloids of Gelsemium elegans roots[J]. Journal of Ethnopharmacology, 2015, 166:66-73 Delescluse C, Lemaire G, de Sousa G, et al. Is CYP1A1 induction always related to AHR signaling pathway?[J]. Toxicology, 2000, 153(1-3):73-82 Gabbia D, Pozza A D, Albertoni L, et al. Pregnane X receptor and constitutive androstane receptor modulate differently CYP3A-mediated metabolism in early- and late-stage cholestasis[J]. World Journal of Gastroenterology, 2017, 23(42):7519-7530 Chen G, Konstantinov A D, Chittim B G, et al. Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the Ah receptor mediated pathway[J]. Environmental Science & Technology, 2001, 35(18):3749-3756 魏爱雪, 王学彤, 徐晓白. 环境中多溴联苯醚类(PBDEs)化合物污染研究[J]. 化学进展, 2006, 18(9):1227-1233 Wei A X, Wang X T, Xu X B. The pollution research aspect on poly-brominated diphenyl esters (PBDEs) compounds in environment[J]. Progress in Chemistry, 2006, 18(9):1227-1233(in Chinese)
Blanco J, Mulero M, Domingo J L, et al. Gestational exposure to BDE-99 produces toxicity through upregulation of CYP isoforms and ROS production in the fetal rat liver[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2012, 127(1):296-302 Wahl M, Guenther R, Yang L, et al. Polybrominated diphenyl ethers and arylhydrocarbon receptor agonists:Different toxicity and target gene expression[J]. Toxicology Letters, 2010, 198(2):119-126 Su G Y, Xia J, Liu H L, et al. Dioxin-like potency of HO- and MeO- analogues of PBDEs' the potential risk through consumption of fish from Eastern China[J]. Environmental Science & Technology, 2012, 46(19):10781-10788 Wang X L, Lu Y, Wang E, et al. Hepatic estrogen receptor α improves hepatosteatosis through upregulation of small heterodimer partner[J]. Journal of Hepatology, 2015, 63(1):183-190 Wang D Z, Yan J, Teng M M, et al. In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet:Impaired lipid metabolism and intestinal dysbiosis[J]. Archives of Toxicology, 2018, 92(5):1847-1860 Khalil A, Parker M, Mpanga R, et al. Developmental exposure to 2,2',4,4'-tetrabromodiphenyl ether induces long-lasting changes in liver metabolism in male mice[J]. Journal of the Endocrine Society, 2017, 1(4):323-344 Taylor K W, Novak R F, Anderson H A, et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies:A national toxicology program workshop review[J]. Environmental Health Perspectives, 2013, 121(7):774-783 Liu X, Zhang L, Li J G, et al. A nested case-control study of the association between exposure to polybrominated diphenyl ethers and the risk of gestational diabetes mellitus[J]. Environment International, 2018, 119:232-238 Søfteland L, Petersen K, Stavrum A K, et al. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.)[J]. Aquatic Toxicology, 2011, 105(3-4):246-263 Pereira L C, Souza A O, Tasso M J, et al. Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death[J]. Journal of Toxicology and Environmental Health, Part A, 2017, 80(19-21):1129-1144 Pereira L C, de Souza A O, Dorta D J. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment[J]. Basic & Clinical Pharmacology & Toxicology, 2013, 112(6):418-424 Souza A O, Pereira L C, Oliveira D P, et al. BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line-HepG2[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2013, 27(2):580-587 Yan C, Huang D J, Zhang Y M. The involvement of ROS overproduction and mitochondrial dysfunction in PBDE-47-induced apoptosis on Jurkat cells[J]. Experimental and Toxicologic Pathology, 2011, 63(5):413-417 -

计量
- 文章访问数: 2597
- HTML全文浏览数: 2597
- PDF下载数: 60
- 施引文献: 0