多溴联苯醚在肝脏中的残留代谢及毒性作用研究进展

杨翼, 饶钦雄, 孙诗谣, 徐静茹, 赵志辉, 杨俊花, 主性. 多溴联苯醚在肝脏中的残留代谢及毒性作用研究进展[J]. 生态毒理学报, 2022, 17(5): 251-259. doi: 10.7524/AJE.1673-5897.20210507001
引用本文: 杨翼, 饶钦雄, 孙诗谣, 徐静茹, 赵志辉, 杨俊花, 主性. 多溴联苯醚在肝脏中的残留代谢及毒性作用研究进展[J]. 生态毒理学报, 2022, 17(5): 251-259. doi: 10.7524/AJE.1673-5897.20210507001
Yang Yi, Rao Qinxiong, Sun Shiyao, Xu Jingru, Zhao Zhihui, Yang Junhua, Zhu Xing. Research Progress in Residual Metabolism and Hepatotoxicity of Polybrominated Diphenyl Ethers (PBDEs)[J]. Asian journal of ecotoxicology, 2022, 17(5): 251-259. doi: 10.7524/AJE.1673-5897.20210507001
Citation: Yang Yi, Rao Qinxiong, Sun Shiyao, Xu Jingru, Zhao Zhihui, Yang Junhua, Zhu Xing. Research Progress in Residual Metabolism and Hepatotoxicity of Polybrominated Diphenyl Ethers (PBDEs)[J]. Asian journal of ecotoxicology, 2022, 17(5): 251-259. doi: 10.7524/AJE.1673-5897.20210507001

多溴联苯醚在肝脏中的残留代谢及毒性作用研究进展

    作者简介: 杨翼(1997-),女,硕士,研究方向为真菌毒素毒理学,E-mail:a18285232928@163.com
    通讯作者: 杨俊花, E-mail: yangjunhua303@126.com 主性, E-mail: zhuxing72@126.com
  • 基金项目:

    国家重点研发计划“新型POPs识别及在畜禽体内迁移转化及控制机理”(2017YFC1600302)

  • 中图分类号: X171.5

Research Progress in Residual Metabolism and Hepatotoxicity of Polybrominated Diphenyl Ethers (PBDEs)

    Corresponding authors: Yang Junhua, yangjunhua303@126.com ;  Zhu Xing, zhuxing72@126.com
  • Fund Project:
  • 摘要: 多溴联苯醚(polybrominated diphenyl ethers,PBDEs)是一类具有亲脂性、难降解、易沉积和高生物毒性的持久性有机污染物,在全球范围常被用作添加型溴代阻燃剂。近年来,PBDEs广泛暴露于环境介质和生命体内(植物、动物、人体)内,对生态环境和人类健康造成巨大的安全风险,引起机体多个器官的毒性作用。其中肝脏是PBDEs代谢及其毒性攻击的主要靶标器官之一,已有资料证明PBDEs易积聚在肝脏中,发生氧化脱溴、还原脱溴或CYP酶介导的生物转化等。故本文围绕PBDEs在肝脏中的污染暴露、代谢转化、毒性作用及致毒机理等方面进行综述,旨在为深入探索PBDEs的肝毒性相关研究提供科学的理论依据。
  • 加载中
  • 郭楠楠, 孟顺龙, 陈家长. 多溴联苯醚在环境中的残留及毒理学效应研究进展[J]. 中国农学通报, 2019, 35(25):159-164

    Guo N N, Meng S L, Chen J Z. Polybrominated biphenyl ethers:Residual in the environment and research progress on toxicological effects[J]. Chinese Agricultural Science Bulletin, 2019, 35(25):159-164(in Chinese)

    Alaee M, Arias P, Sjödin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environment International, 2003, 29(6):683-689
    Ross P S, Couillard C M, Ikonomou M G, et al. Large and growing environmental reservoirs of Deca-BDE present an emerging health risk for fish and marine mammals[J]. Marine Pollution Bulletin, 2009, 58(1):7-10
    Wu Z N, He C, Han W, et al. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans:A review[J]. Environmental Research, 2020, 187:109531
    DeCarlo V J. Studies on brominated chemicals in the environment[J]. Annals of the New York Academy of Sciences, 1979, 320(1 Health Effect):678-681
    Norén K, Meironyté D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years[J]. Chemosphere, 2000, 40(9-11):1111-1123
    McDonald T A. A perspective on the potential health risks of PBDEs[J]. Chemosphere, 2002, 46(5):745-755
    de Boer J, Wester P G, van der Horst A, et al. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands[J]. Environmental Pollution, 2003, 122(1):63-74
    Sellström U, de Wit C A, Lundgren N, et al. Effect of sewage-sludge application on concentrations of higher-brominated diphenyl ethers in soils and earthworms[J]. Environmental Science & Technology, 2005, 39(23):9064-9070
    Muir D C G, Backus S, Derocher A E, et al. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard[J]. Environmental Science & Technology, 2006, 40(2):449-455
    张娴, 高亚杰, 颜昌宙. 多溴联苯醚在环境中迁移转化的研究进展[J]. 生态环境学报, 2009, 18(2):761-770

    Zhang X, Gao Y J, Yan C Z. Advance in researches on the transport and transformation of polybrominated diphenyl ethers in environment[J]. Ecology and Environmental Sciences, 2009, 18(2):761-770(in Chinese)

    Johnson P I, Stapleton H M, Mukherjee B, et al. Associations between brominated flame retardants in house dust and hormone levels in men[J]. The Science of the Total Environment, 2013, 445-446:177-184
    Costa L G, de Laat R, Tagliaferri S, et al. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity[J]. Toxicology Letters, 2014, 230(2):282-294
    Cao L Y, Zheng Z Y, Ren X M, et al. Structure-dependent activity of polybrominated diphenyl ethers and their hydroxylated metabolites on estrogen related receptor γ:in vitro and in silico study[J]. Environmental Science & Technology, 2018, 52(15):8894-8902
    Kuriyama S N, Wanner A, Fidalgo-Neto A A, et al. Developmental exposure to low-dose PBDE-99:Tissue distribution and thyroid hormone levels[J]. Toxicology, 2007, 242(1-3):80-90
    Herbstman J B, Sjödin A, Kurzon M, et al. Prenatal exposure to PBDEs and neurodevelopment[J]. Environmental Health Perspectives, 2010, 118(5):712-719
    Stapleton H M, Kelly S M, Pei R T, et al. Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro[J]. Environmental Health Perspectives, 2009, 117(2):197-202
    Sanders J M, Chen L J, Lebetkin E H, et al. Metabolism and disposition of 2,2',4,4'-tetrabromodiphenyl ether following administration of single or multiple doses to rats and mice[J]. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 2006, 36(1):103-117
    Staskal D F, Diliberto J J, Birnbaum L S. Impact of repeated exposure on the toxicokinetics of BDE 47 in mice[J]. Toxicological Sciences, 2005, 89(2):380-385
    Wang J X, Bao L J, Luo P, et al. Intake, distribution, and metabolism of decabromodiphenyl ether and its main metabolites in chickens and implications for human dietary exposure[J]. Environmental Pollution, 2017, 231(Pt 1):795-801
    Luo Q, Cai Z W, Wong M H. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste[J]. Science of the Total Environment, 2007, 383(1-3):115-127
    Xian Q M, Ramu K, Isobe T, et al. Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China[J]. Chemosphere, 2008, 71(2):268-276
    Erratico C A, Szeitz A, Bandiera S M. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes:Identification of cytochrome P4502B6 as the major enzyme involved[J]. Chemical Research in Toxicology, 2013, 26(5):721-731
    Li J H, Chen Y, Xiao W J. Polybrominated diphenyl ethers in articles:A review of its applications and legislation[J]. Environmental Science and Pollution Research International, 2017, 24(5):4312-4321
    Abbasi G, Li L, Breivik K. Global historical stocks and emissions of PBDEs[J]. Environmental Science & Technology, 2019, 53(11):6330-6340
    Geyer H J, Schramm K W, Per O, et al. Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans[C]. Berlin (Germany):U.S. Department of Energy Office of Scientific and Technical Information, 2004:3820-3825
    Zota A R, Mitro S D, Robinson J F, et al. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression[J]. Environment International, 2018, 112:269-278
    Sinkkonen S, Rantalainen A L, Paasivirta J, et al. Polybrominated methoxy diphenyl ethers (MeO-PBDEs) in fish and guillemot of Baltic, Atlantic and Arctic environments[J]. Chemosphere, 2004, 56(8):767-775
    Cantón R F, Scholten D E A, Marsh G, et al. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs)[J]. Toxicology and Applied Pharmacology, 2008, 227(1):68-75
    Pohl H R, Odin M, McClure P R, et al. Toxicological profile for polybrominated diphenyl ethers (PBDEs)[R]. Washington DC:U.S. Department of Health and Human Services, 2017:43-297
    Yang J, Zhu J Y, Chan K M. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells[J]. Toxicology and Applied Pharmacology, 2016, 305:203-215
    Sanders J M, Burka L T, Smith C S, et al. Differential expression of CYP1A, 2B, and 3A genes in the F344 rat following exposure to a polybrominated diphenyl ether mixture or individual components[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2005, 88(1):127-133
    McKinney M A, De Guise S, Martineau D, et al. Biotransformation of polybrominated diphenyl ethers and polychlorinated biphenyls in Beluga whale (Delphinapterus leucas) and rat mammalian model using an in vitro hepatic microsomal assay[J]. Aquatic Toxicology, 2006, 77(1):87-97
    Hakk H, Letcher R J. Metabolism in the toxicokinetics and fate of brominated flame retardants:A review[J]. Environment International, 2003, 29(6):801-828
    Luo Y L, Luo X J, Ye M X, et al. Species-specific and structure-dependent debromination of polybrominated diphenyl ether in fish by in vitro hepatic metabolism[J]. Environmental Toxicology and Chemistry, 2017, 36(8):2005-2011
    van den Steen E, Covaci A, Jaspers V L, et al. Accumulation, tissue-specific distribution and debromination of decabromodiphenyl ether (BDE 209) in European starlings (Sturnus vulgaris)[J]. Environmental Pollution, 2007, 148(2):648-653
    Erratico C A, Moffatt S C, Bandiera S M. Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes[J]. Toxicological Sciences, 2011, 123(1):37-47
    Dunnick J K, Nyska A. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers[J]. Experimental and Toxicologic Pathology, 2009, 61(1):1-12
    Sun Y M, Wang Y W, Liang B L, et al. Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats[J]. Science of the Total Environment, 2020, 705:135783
    Alonso V, Linares V, Bellés M, et al. Effects of BDE-99 on hormone homeostasis and biochemical parameters in adult male rats[J]. Food and Chemical Toxicology, 2010, 48(8-9):2206-2211
    王兴华. 十溴联苯醚对小鼠肝脏组织的氧化应激水平及细胞色素C表达水平影响的研究[D]. 合肥:安徽医科大学, 2012:49-53 Wang X H. Study on the effects of decabromodiphenylether on oxidative stress and the expression of cytochrome C in mice liver[D]. Hefei:Anhui Medical University, 2012:49

    -53(in Chinese)

    Mottaran E, Stewart S F, Rolla R, et al. Lipid peroxidation contributes to immune reactions associated with alcoholic liver disease[J]. Free Radical Biology & Medicine, 2002, 32(1):38-45
    Wang L L, Zou W, Zhong Y F, et al. The hormesis effect of BDE-47 in HepG2 cells and the potential molecular mechanism[J]. Toxicology Letters, 2012, 209(2):193-201
    Tang S Y, Liu H, Yin H, et al. Effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its metabolites on cell viability, oxidative stress, and apoptosis of HepG2[J]. Chemosphere, 2018, 193:978-988
    吴伟, 聂凤琴, 瞿建宏. 多溴联苯醚对鲫鱼离体肝脏组织中CAT和GSH-Px的影响[J]. 生态环境学报, 2009, 18(2):408-413

    Wu W, Nie F Q, Qu J H. The in vitro effects of tetrabromodiphenyl ether and decabromodiphenyl ether on the activities of catalase and glutathione peroxidase in the liver of Carassius auratus[J]. Ecology and Environmental Sciences, 2009, 18(2):408-413(in Chinese)

    Zhao A J, Liu H Q, Zhang A N, et al. Effect of BDE-209 on glutathione system in Carassius auratus[J]. Environmental Toxicology and Pharmacology, 2011, 32(1):35-39
    Wang Y H, Wu S S, Chen Z C, et al. Inhibitory effects of cytochrome P450 enzymes CYP1A2, CYP2A6, CYP2E1 and CYP3A4 by extracts and alkaloids of Gelsemium elegans roots[J]. Journal of Ethnopharmacology, 2015, 166:66-73
    Delescluse C, Lemaire G, de Sousa G, et al. Is CYP1A1 induction always related to AHR signaling pathway?[J]. Toxicology, 2000, 153(1-3):73-82
    Gabbia D, Pozza A D, Albertoni L, et al. Pregnane X receptor and constitutive androstane receptor modulate differently CYP3A-mediated metabolism in early- and late-stage cholestasis[J]. World Journal of Gastroenterology, 2017, 23(42):7519-7530
    Chen G, Konstantinov A D, Chittim B G, et al. Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the Ah receptor mediated pathway[J]. Environmental Science & Technology, 2001, 35(18):3749-3756
    魏爱雪, 王学彤, 徐晓白. 环境中多溴联苯醚类(PBDEs)化合物污染研究[J]. 化学进展, 2006, 18(9):1227-1233

    Wei A X, Wang X T, Xu X B. The pollution research aspect on poly-brominated diphenyl esters (PBDEs) compounds in environment[J]. Progress in Chemistry, 2006, 18(9):1227-1233(in Chinese)

    Blanco J, Mulero M, Domingo J L, et al. Gestational exposure to BDE-99 produces toxicity through upregulation of CYP isoforms and ROS production in the fetal rat liver[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2012, 127(1):296-302
    Wahl M, Guenther R, Yang L, et al. Polybrominated diphenyl ethers and arylhydrocarbon receptor agonists:Different toxicity and target gene expression[J]. Toxicology Letters, 2010, 198(2):119-126
    Su G Y, Xia J, Liu H L, et al. Dioxin-like potency of HO- and MeO- analogues of PBDEs' the potential risk through consumption of fish from Eastern China[J]. Environmental Science & Technology, 2012, 46(19):10781-10788
    Wang X L, Lu Y, Wang E, et al. Hepatic estrogen receptor α improves hepatosteatosis through upregulation of small heterodimer partner[J]. Journal of Hepatology, 2015, 63(1):183-190
    Wang D Z, Yan J, Teng M M, et al. In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet:Impaired lipid metabolism and intestinal dysbiosis[J]. Archives of Toxicology, 2018, 92(5):1847-1860
    Khalil A, Parker M, Mpanga R, et al. Developmental exposure to 2,2',4,4'-tetrabromodiphenyl ether induces long-lasting changes in liver metabolism in male mice[J]. Journal of the Endocrine Society, 2017, 1(4):323-344
    Taylor K W, Novak R F, Anderson H A, et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies:A national toxicology program workshop review[J]. Environmental Health Perspectives, 2013, 121(7):774-783
    Liu X, Zhang L, Li J G, et al. A nested case-control study of the association between exposure to polybrominated diphenyl ethers and the risk of gestational diabetes mellitus[J]. Environment International, 2018, 119:232-238
    Søfteland L, Petersen K, Stavrum A K, et al. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.)[J]. Aquatic Toxicology, 2011, 105(3-4):246-263
    Pereira L C, Souza A O, Tasso M J, et al. Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death[J]. Journal of Toxicology and Environmental Health, Part A, 2017, 80(19-21):1129-1144
    Pereira L C, de Souza A O, Dorta D J. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment[J]. Basic & Clinical Pharmacology & Toxicology, 2013, 112(6):418-424
    Souza A O, Pereira L C, Oliveira D P, et al. BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line-HepG2[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2013, 27(2):580-587
    Yan C, Huang D J, Zhang Y M. The involvement of ROS overproduction and mitochondrial dysfunction in PBDE-47-induced apoptosis on Jurkat cells[J]. Experimental and Toxicologic Pathology, 2011, 63(5):413-417
  • 加载中
计量
  • 文章访问数:  2597
  • HTML全文浏览数:  2597
  • PDF下载数:  60
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-07
杨翼, 饶钦雄, 孙诗谣, 徐静茹, 赵志辉, 杨俊花, 主性. 多溴联苯醚在肝脏中的残留代谢及毒性作用研究进展[J]. 生态毒理学报, 2022, 17(5): 251-259. doi: 10.7524/AJE.1673-5897.20210507001
引用本文: 杨翼, 饶钦雄, 孙诗谣, 徐静茹, 赵志辉, 杨俊花, 主性. 多溴联苯醚在肝脏中的残留代谢及毒性作用研究进展[J]. 生态毒理学报, 2022, 17(5): 251-259. doi: 10.7524/AJE.1673-5897.20210507001
Yang Yi, Rao Qinxiong, Sun Shiyao, Xu Jingru, Zhao Zhihui, Yang Junhua, Zhu Xing. Research Progress in Residual Metabolism and Hepatotoxicity of Polybrominated Diphenyl Ethers (PBDEs)[J]. Asian journal of ecotoxicology, 2022, 17(5): 251-259. doi: 10.7524/AJE.1673-5897.20210507001
Citation: Yang Yi, Rao Qinxiong, Sun Shiyao, Xu Jingru, Zhao Zhihui, Yang Junhua, Zhu Xing. Research Progress in Residual Metabolism and Hepatotoxicity of Polybrominated Diphenyl Ethers (PBDEs)[J]. Asian journal of ecotoxicology, 2022, 17(5): 251-259. doi: 10.7524/AJE.1673-5897.20210507001

多溴联苯醚在肝脏中的残留代谢及毒性作用研究进展

    通讯作者: 杨俊花, E-mail: yangjunhua303@126.com ;  主性, E-mail: zhuxing72@126.com
    作者简介: 杨翼(1997-),女,硕士,研究方向为真菌毒素毒理学,E-mail:a18285232928@163.com
  • 1. 上海市农业科学院农产品质量标准与检测技术研究所, 上海 201403;
  • 2. 贵州大学动物科学学院, 贵阳 550025
基金项目:

国家重点研发计划“新型POPs识别及在畜禽体内迁移转化及控制机理”(2017YFC1600302)

摘要: 多溴联苯醚(polybrominated diphenyl ethers,PBDEs)是一类具有亲脂性、难降解、易沉积和高生物毒性的持久性有机污染物,在全球范围常被用作添加型溴代阻燃剂。近年来,PBDEs广泛暴露于环境介质和生命体内(植物、动物、人体)内,对生态环境和人类健康造成巨大的安全风险,引起机体多个器官的毒性作用。其中肝脏是PBDEs代谢及其毒性攻击的主要靶标器官之一,已有资料证明PBDEs易积聚在肝脏中,发生氧化脱溴、还原脱溴或CYP酶介导的生物转化等。故本文围绕PBDEs在肝脏中的污染暴露、代谢转化、毒性作用及致毒机理等方面进行综述,旨在为深入探索PBDEs的肝毒性相关研究提供科学的理论依据。

English Abstract

参考文献 (64)

返回顶部

目录

/

返回文章
返回