徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3):11-27 Xu Y G, Yu W T, Ma Q, et al. The antibiotic in environment and its ecotoxicity:A review[J]. Asian Journal of Ecotoxicology, 2015, 10(3):11-27(in Chinese)
Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
陈宇, 许亚南, 庞燕. 抗生素赋存、来源及风险评估研究进展[J]. 环境工程技术学报, 2021, 11(3):562-570 Chen Y, Xu Y N, Pang Y. Advances in research on the occurrence, source and risk assessment of antibiotics[J]. Journal of Environmental Engineering Technology, 2021, 11(3):562-570(in Chinese)
李威, 李佳熙, 李吉平, 等. 我国不同环境介质中的抗生素污染特征研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(1):205-214 Li W, Li J X, Li J P, et al. Pollution characteristics of antibiotics in different environment media in China:A review[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1):205-214(in Chinese)
Wang L F, Wang Y F, Li H, et al. Occurrence, source apportionment and source-specific risk assessment of antibiotics in a typical tributary of the Yellow River Basin[J]. Journal of Environmental Management, 2022, 305:114382
Lei K, Zhu Y, Chen W, et al. Spatial and seasonal variation of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment[J]. Environmental International, 2019, 130:104919
Zhou L J, Li J, Zhang Y D, et al. Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River Basin, China[J]. Ecotoxicology and Environmental Safety, 2019, 183:109511
Zhou Q Q, Liu G J, Arif M, et al. Occurrence and risk assessment of antibiotics in the surface water of Chaohu Lake and its tributaries in China[J]. The Science of the Total Environment, 2022, 807(Pt 3):151040
Zhang G D, Liu X H, Lu S Y, et al. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model[J]. Chemosphere, 2020, 242:125269
Wu Q, Xiao S K, Pan C G, et al. Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China[J]. Science of the Total Environment, 2022, 806:150439
Li F F, Chen L J, Chen W D, et al. Antibiotics in coastal water and sediments of the East China Sea:Distribution, ecological risk assessment and indicators screening[J]. Marine Pollution Bulletin, 2020, 151:110810
Välitalo P, Kruglova A, Mikola A, et al. Toxicological impacts of antibiotics on aquatic micro-organisms:A mini-review[J]. International Journal of Hygiene and Environmental Health, 2017, 220(3):558-569
方媛瑗, 丁惠君. 抗生素的生态毒性效应研究进展[J]. 环境科学与技术, 2018, 41(5):102-110 Fang Y Y, Ding H J. Advance in ecological toxicity of antibiotics[J]. Environmental Science & Technology, 2018, 41(5):102-110(in Chinese)
Liu R B, Li S Q, Tu Y F, et al. Capabilities and mechanisms of microalgae on removing micropollutants from wastewater:A review[J]. Journal of Environmental Management, 2021, 285:112149
Xie P, Chen C, Zhang C F, et al. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae[J]. Water Research, 2020, 172:115475
Xiong J Q, Kim S J, Kurade M B, et al. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus:Toxicity, biodegradation, and metabolic fate[J]. Journal of Hazardous Materials, 2019, 370:138-146
Eguchi K, Nagase H, Ozawa M, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae[J]. Chemosphere, 2004, 57(11):1733-1738
Zhang Y B, He D, Chang F, et al. Combined effects of sulfamethoxazole and erythromycin on a freshwater microalga, Raphidocelis subcapitata:Toxicity and oxidative stress[J]. Antibiotics, 2021, 10(5):576
Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata[J]. Environmental Toxicology and Chemistry, 2008, 27(5):1201-1208
Kovalakova P, Cizmas L, Feng M B, et al. Oxidation of antibiotics by ferrate(Ⅵ) in water:Evaluation of their removal efficiency and toxicity changes[J]. Chemosphere, 2021, 277:130365
Borecka M, Białk-Bielińska A, Haliński Ł P, et al. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris[J]. Journal of Hazardous Materials, 2016, 308:179-186
Sun M, Lin H, Guo W, et al. Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa[J]. Journal of Ocean University of China, 2017, 16(6):1167-1174
Rico A, Zhao W K, Gillissen F, et al. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin[J]. Ecotoxicology and Environmental Safety, 2018, 148:228-236
Wang G X, Zhang Q, Li J L, et al. Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris[J]. Aquatic Toxicology, 2019, 212:138-145
Xiong J Q, Kurade M B, Jeon B H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium[J]. Environmental Pollution, 2017, 226:486-493
Carusso S, Juárez A B, Moretton J, et al. Effects of three veterinary antibiotics and their binary mixtures on two green alga species[J]. Chemosphere, 2018, 194:821-827
Magdaleno A, Saenz M E, Juárez A B, et al. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata[J]. Ecotoxicology and Environmental Safety, 2015, 113:72-78
Martins N, Pereira R, Abrantes N, et al. Ecotoxicological effects of ciprofloxacin on freshwater species:Data integration and derivation of toxicity thresholds for risk assessment[J]. Ecotoxicology, 2012, 21(4):1167-1176
Xiong J Q, Kurade M B, Kim J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Journal of Hazardous Materials, 2017, 323(Pt A):212-219
Li J P, Min Z F, Li W, et al. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa:Toxicity and removal mechanism[J]. Ecotoxicology and Environmental Safety, 2020, 191:110156
Xiong Q, Hu L X, Liu Y S, et al. New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy[J]. Aquatic Toxicology, 2019, 207:197-207
Guo J H, Peng J L, Lei Y, et al. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris[J]. Aquatic Toxicology, 2020, 219:105376
Machado M D, Soares E V. Impact of erythromycin on a non-target organism:Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata[J]. Aquatic Toxicology, 2019, 208:179-186
González-Pleiter M, Gonzalo S, Rodea-Palomares I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms:Implications for environmental risk assessment[J]. Water Research, 2013, 47(6):2050-2064
Xu D M, Xiao Y P, Pan H, et al. Toxic effects of tetracycline and its degradation products on freshwater green algae[J]. Ecotoxicology and Environmental Safety, 2019, 174:43-47
Lu L, Wu Y X, Ding H J, et al. The combined and second exposure effect of copper (Ⅱ) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa[J]. Environmental Toxicology and Pharmacology, 2015, 40(1):140-148
中华人民共和国国家环境保护总局. 新化学物质危害评估导则:HJ/T 154-2004[S]. 北京:中国环境科学出版社, 2004
Mao Y F, Yu Y, Ma Z X, et al. Azithromycin induces dual effects on microalgae:Roles of photosynthetic damage and oxidative stress[J]. Ecotoxicology and Environmental Safety, 2021, 222:112496
Niu Z G, Xu W A, Na J, et al. How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima:A probable positive factor for red tides[J]. Environmental Pollution, 2019, 255(Pt 1):113149
Chen S, Wang L Q, Feng W B, et al. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris:Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids[J]. Scientific Reports, 2020, 10(1):8243
Xu D M, Xie Y T, Li J. Toxic effects and molecular mechanisms of sulfamethoxazole on Scenedesmus obliquus[J]. Ecotoxicology and Environmental Safety, 2022, 232:113258
Chen S, Zhang W, Li J Y, et al. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum)[J]. Environmental Pollution, 2020, 263:114554
Xiong J Q, Govindwar S, Kurade M B, et al. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus[J]. Chemosphere, 2019, 218:551-558
张红波, 董聪聪, 杨燕君, 等. 基于叶绿素荧光探讨链霉素对念珠藻生长及光合毒性效应[J]. 水生生物学报, 2019, 43(3):664-669 Zhang H B, Dong C C, Yang Y J, et al. The toxic effect of streptomycin on the growth and photosynthesis of Nostoc using the chlorophyll fluorescence analysis[J]. Acta Hydrobiologica Sinica, 2019, 43(3):664-669(in Chinese)
许萍萍, 涂晓杰, 成凤凤, 等. 庆大霉素对斜生栅藻生长与光合活性的影响[J]. 环境科学与技术, 2021, 44(8):146-153 Xu P P, Tu X J, Cheng F F, et al. Toxic effects of gentamicin on growth and activity of photosynthetic system Ⅱ of Scenedesmus obliquus[J]. Environmental Science & Technology, 2021, 44(8):146-153(in Chinese)
Xiong J Q, Kurade M B, Abou-Shanab R A, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate[J]. Bioresource Technology, 2016, 205:183-190
Han Q Z, Zheng Y, Qi Q J, et al. Involvement of oxidative stress in the sensitivity of two algal species exposed to roxithromycin[J]. Ecotoxicology, 2020, 29(5):625-633
Nie X P, Liu B Y, Yu H J, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata[J]. Environmental Pollution, 2013, 172:23-32
Zhang Q, Bai Y, Chen Z, et al. Lincomycin-induced transcriptional alterations in the green alga Raphidocelis subcapitata[J]. Applied Sciences, 2020, 10(23):8565
Guo J H, Zhang Y B, Mo J Z, et al. Sulfamethoxazole-altered transcriptomein green alga Raphidocelis subcapitata suggests inhibition of translation and DNA damage repair[J]. Frontiers in Microbiology, 2021, 12:541451
Li J P, Li W, Min Z F, et al. Physiological, biochemical and transcription effects of roxithromycin before and after phototransformation in Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2021, 238:105911
Guo J H, Bai Y, Chen Z, et al. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin[J]. Ecotoxicology and Environmental Safety, 2020, 201:110737
Jiang R X, Wei Y R, Sun J Y, et al. Degradation of cefradine in alga-containing water environment:A mechanism and kinetic study[J]. Environmental Science and Pollution Research International, 2019, 26(9):9184-9192
杜迎翔, 冯云庆, 项钟润, 等. 蛋白核小球藻去除2种头孢类抗生素的研究[J]. 环境科学与技术, 2015, 38(10):105-111 Du Y X, Feng Y Q, Xiang Z R, et al. Removal of two cephalosporins in Chlorella pyrenoidosa[J]. Environmental Science & Technology, 2015, 38(10):105-111(in Chinese)
Du Y X, Wang J, Li H T, et al. The dual function of the algal treatment:Antibiotic elimination combined with CO2 fixation[J]. Chemosphere, 2018, 211:192-201
Yu Y, Zhou Y Y, Wang Z L, et al. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment[J]. Scientific Reports, 2017, 7(1):4168
Chen Q H, Zhang L, Han Y H, et al. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems[J]. Environmental Science and Pollution Research International, 2020, 27(22):28198-28208
Xiong Q, Liu Y S, Hu L X, et al. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa[J]. Water Research, 2020, 175:115656
Kiki C, Rashid A, Wang Y W, et al. Dissipation of antibiotics by microalgae:Kinetics, identification of transformation products and pathways[J]. Journal of Hazardous Materials, 2020, 387:121985
Xiong J Q, Kurade M B, Patil D V, et al. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater[J]. Algal Research, 2017, 25:54-61
Xiong J Q, Kurade M B, Jeon B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris[J]. Chemical Engineering Journal, 2017, 313:1251-1257
Zhou T, Cao L P, Zhang Q, et al. Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway[J]. Journal of Hazardous Materials, 2021, 413:125310
Zhao F, Zhang D, Xu C Y, et al. The enhanced degradation and detoxification of chlortetracycline by Chlamydomonas reinhardtii[J]. Ecotoxicology and Environmental Safety, 2020, 196:110552
Pan M M, Lyu T, Zhan L M, et al. Mitigating antibiotic pollution using cyanobacteria:Removal efficiency, pathways and metabolism[J]. Water Research, 2021, 190:116735
周楠, 陈建秋, 王晓, 等. 氮磷营养调控对微藻去除抗生素的增效作用研究[J]. 水处理技术, 2021, 47(3):32-37 Zhou N, Chen J Q, Wang X, et al. Study on the synergistic effect of nitrogen and phosphorus nutrition regulation on the antibiotic removal by microalgae[J]. Technology of Water Treatment, 2021, 47(3):32-37(in Chinese)
Batchu S R, Panditi V R, O'Shea K E, et al. Photodegradation of antibiotics under simulated solar radiation:Implications for their environmental fate[J]. The Science of the Total Environment, 2014, 470-471:299-310
Yan S W, Song W H. Photo-transformation of pharmaceutically active compounds in the aqueous environment:A review[J]. Environmental Science:Processes & Impacts, 2014, 16(4):697-720
Wei L X, Li H X, Lu J F. Algae-induced photodegradation of antibiotics:A review[J]. Environmental Pollution, 2021, 272:115589
Tian Y J, Zou J R, Feng L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs):Role of triplet state EOMs[J]. Water Research, 2019, 149:35-41
Tian Y J, Wei L X, Yin Z, et al. Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline:Role of chemical constituents and structure[J]. Water Research, 2019, 164:114940
Leng L J, Wei L, Xiong Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater:A review[J]. Chemosphere, 2020, 238:124680
Santaeufemia S, Torres E, Mera R, et al. Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum[J]. Journal of Hazardous Materials, 2016, 320:315-325
Hena S, Gutierrez L, Croué J P. Removal of metronidazole from aqueous media by C. vulgaris[J]. Journal of Hazardous Materials, 2020, 384:121400
Cao J S, Jiang R X, Wang J Q, et al. Study on the interaction mechanism between cefradine and Chlamydomonas reinhardtii in water solutions under dark condition[J]. Ecotoxicology and Environmental Safety, 2018, 159:56-62
钟雪晴, 朱雅莉, 王玉娇, 等. 含抗生素废水的微藻处理技术及其进展[J]. 化工进展, 2021, 40(4):2308-2317 Zhong X Q, Zhu Y L, Wang Y J, et al. Progress on antibiotic wastewater treatment by microalgae[J]. Chemical Industry and Engineering Progress, 2021, 40(4):2308-2317(in Chinese)
Xiong J Q, Kurade M B, Jeon B H. Can microalgae remove pharmaceutical contaminants from water?[J]. Trends in Biotechnology, 2018, 36(1):30-44
Zhang C J, Zhang Q F, Dong S S, et al. Could co-substrate sodium acetate simultaneously promote Chlorella to degrade amoxicillin and produce bioresources?[J]. Journal of Hazardous Materials, 2021, 417:126147
Hom-Diaz A, Jaén-Gil A, Rodríguez-Mozaz S, et al. Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and Pseudokirchneriella subcapitata)[J]. Algal Research, 2022, 61:102560