三角褐指藻对环丙沙星的去除过程及影响因素
Removal Process of Ciprofloxacin by Phaeodactylum tricornutum and Its Influencing Factors
-
摘要: 我国沿海水域面临严峻的抗生素污染问题,威胁生态平衡和人类健康。微藻在抗生素污水治理领域具有广阔的应用前景。本文选取海水养殖常用的三角褐指藻,以环丙沙星(ciprofloxacin,CIP)为目标污染物,研究了三角褐指藻对CIP的去除动力学规律。并进一步探究了pH、光照、盐度和抗生素浓度对去除效率的影响。当CIP初始浓度为600 μg·L-1时,90 d内三角褐指藻能去除60.0%的CIP,该过程符合一级动力学模型,分别在pH为5.5、33%光照强度、10‰盐度条件下得到最佳去除率,而且去除率与抗生素初始浓度呈负相关关系。三角褐指藻对CIP表现出良好的耐受性,为微藻在海洋抗生素污染治理领域的应用提供参考。Abstract: Coastal water in China is facing severe antibiotic pollution, which threatens ecological safety and human health. Microalgae have been widely used in many fields including wastewater containing antibiotic treatment. This study selected Phaeodactylum tricornutum (P. tricornutum), which is a commonly used marine aquaculture microalgae to investigate the removal kinetics of ciprofloxacin (CIP). The effects of pH, light, salinity and antibiotic concentration on removal efficiency were further investigated. When the initial concentration of CIP was 600 μg·L-1, 60.0% of CIP could be removed within 90 d. The removal process could be described by the first-order kinetic model. The optimal removal rate was obtained under the conditions including pH of 5.5, 33% of light intensity and 10‰ of salinity. The removal rate was negatively correlated with the initial concentration of CIP. P. tricornutum showed good tolerance to CIP, which could provide information on potential application of microalgae for antibiotic pollution treatment in the marine environment.
-
Key words:
- ciprofloxacin /
- Phaeodactylum tricornutum /
- growth inhibition
-
吕剑, 骆永明, 章海波. 中国海岸带污染问题与防治措施[J]. 中国科学院院刊, 2016, 31(10):1175-1181 Lv J, Luo Y M, Zhang H B. Coastal zone pollution and its prevention and treatment measures in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1175-1181(in Chinese)
包樱钰, 李菲菲, 温东辉. 我国海水养殖业的抗生素污染现状[J]. 海洋环境科学, 2021, 40(2):294-302 Bao Y Y, Li F F, Wen D H. Antibiotic contamination in mariculture in China[J]. Marine Environmental Science, 2021, 40(2):294-302(in Chinese)
Lu J, Wu J, Zhang C, et al. Occurrence, distribution, and ecological-health risks of selected antibiotics in coastal waters along the coastline of China[J]. Science of the Total Environment, 2018, 644:1469-1476 Kumar M, Jaiswal S, Sodhi K K, et al. Antibiotics bioremediation:Perspectives on its ecotoxicity and resistance[J]. Environment International, 2019, 124:448-461 Ao X W, Liu W J, Sun W J, et al. Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation:Kinetics, mechanism, and genotoxicity[J]. Chemical Engineering Journal, 2018, 345:87-97 Xiong Q, Liu Y S, Hu L X, et al. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa[J]. Water Research, 2020, 175:115656 Xiong J Q, Kurade M B, Jeon B H. Can microalgae remove pharmaceutical contaminants from water?[J]. Trends in Biotechnology, 2018, 36(1):30-44 Shi X Q, Yeap T S, Huang S J, et al. Pretreatment of saline antibiotic wastewater using marine microalga[J]. Bioresource Technology, 2018, 258:240-246 Chen F F, Xiao Y, Wu X W, et al. Replacement of feed by fresh microalgae as a novel technology to alleviate water deterioration in aquaculture[J]. RSC Advances, 2020, 10(35):20794-20800 Patel A K, Choi Y Y, Sim S J. Emerging prospects of mixotrophic microalgae:Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels[J]. Bioresource Technology, 2020, 300:122741 Xiong J Q, Kurade M B, Jeon B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris[J]. Chemical Engineering Journal, 2017, 313:1251-1257 Song C F, Wei Y L, Qiu Y T, et al. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38:Experimental study[J]. Bioresource Technology, 2019, 272:529-534 王桂祥, 张琼, 匡少平, 等. 环境浓度下的混合抗生素对普通小球藻的联合毒性[J]. 生态毒理学报, 2019, 14(2):122-128 Wang G X, Zhang Q, Kuang S P, et al. The joint toxicity of mixed antibiotics on Chlorella vulgaris at normal environmental concentration[J]. Asian Journal of Ecotoxicology, 2019, 14(2):122-128(in Chinese)
Xiong J Q, Kurade M B, Kim J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Journal of Hazardous Materials, 2017, 323:212-219 Xie P, Chen C, Zhang C F, et al. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae[J]. Water Research, 2020, 172:115475 Jiang H M, Gao K S. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) 1[J]. Journal of Phycology, 2004, 40(4):651-654 潘瑾, 俞建中, 马晓磊, 等. 温度影响三角褐指藻生长和脂肪酸组成的初步探讨[J]. 渔业科学进展, 2010, 31(6):90-94 Pan J, Yu J Z, Ma X L, et al. Effect of temperature on the growth and fatty acid composition of Phaeodactylum tricornutum[J]. Progress in Fishery Sciences, 2010, 31(6):90-94(in Chinese)
洪喻, 郝立翀, 陈足音. 新兴污染物对微藻的毒性作用与机制研究进展[J]. 生态毒理学报, 2019, 14(5):22-45 Hong Y, Hao L C, Chen Z Y. Research progress on the toxic effects of emerging pollutants on microalgae and the mechanisms[J]. Asian Journal of Ecotoxicology, 2019, 14(5):22-45(in Chinese)
孟磊, 杨兵, 薛南冬. 氟喹诺酮类抗生素环境行为及其生态毒理研究进展[J]. 生态毒理学报, 2015, 10(2):76-88 Meng L, Yang B, Xue N D. A review on environmental behaviors and ecotoxicology of fluoroquinolone antibiotics[J]. Asian Journal of Ecotoxicology, 2015, 10(2):76-88(in Chinese)
邹高龙, 刘志文, 董洁平, 等. 环丙沙星在污水处理过程中的迁移转化及对污水生物处理的影响[J]. 环境科学学报, 2019, 39(2):308-317 Zou G L, Liu Z W, Dong J P, et al. The transformation of ciprofloxacin in wastewater treatment and its impact on wastewater treatment[J]. Acta Scientiae Circumstantiae, 2019, 39(2):308-317(in Chinese)
Guillard R. Culture of Phytoplankton for Feeding Marine Invertebrates[M]//Smith W L, Chanley M H. Culture of Marine Invertebrate Animals. New York:Plenum Press, 1975:29-60 Amorim C L, Moreira I S, Maia A S, et al. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11[J]. Applied Microbiology and Biotechnology, 2014, 98(7):3181-3190 Bai X L, Acharya K. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water[J]. The Science of the Total Environment, 2017, 581-582:734-740 李霞, 陈菊芳, 聂湘平, 等. 盐酸环丙沙星在不同模拟水体中的降解与残留[J]. 中山大学学报:自然科学版, 2010, 49(3):102-106 Li X, Chen J F, Nie X P, et al. Degradation and residue of ciprofloxacin in different simulated water bodies[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(3):102-106(in Chinese)
朱小燕, 傅大放, 邓琳, 等. 小球藻引发水中环丙沙星的光降解效能研究[J]. 中国环境科学, 2013, 33(4):663-668 Zhu X Y, Fu D F, Deng L, et al. Efficiency of ciprofloxacin photodegradation induced by chlorella in aqueous solutions[J]. China Environmental Science, 2013, 33(4):663-668(in Chinese)
Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin[J]. Environmental Science & Technology, 2013, 47(9):4284-4290 Chen Q H, Zhang L, Han Y H, et al. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems[J]. Environmental Science and Pollution Research, 2020, 27(22):28198-28208 Leng L J, Wei L, Xiong Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater:A review[J]. Chemosphere, 2020, 238:124680 Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J]. Water Research, 2004, 38(12):2874-2890 Torniainen K, Tammilehto S, Ulvi V. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin[J]. International Journal of Pharmaceutics, 1996, 132(1-2):53-61 Salma A, Thoröe-Boveleth S, Schmidt T C, et al. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin[J]. Journal of Hazardous Materials, 2016, 313:49-59 Tran N A T, Seymour J R, Siboni N, et al. Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata[J]. Algal Research, 2017, 26:302-311 Wu Y, Gao K, Riebesell U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum[J]. Biogeosciences, 2010, 7(73):2915-2923 Bitaubé Pérez E, Caro Pina I, Pérez Rodríguez L. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor[J]. Biochemical Engineering Journal, 2008, 40(3):520-525 叶丽, 蒋霞敏, 毛欣欣, 等. 温、光、盐对三角褐指藻紫外诱变株生长、总脂及脂肪酸的影响[J]. 生态学杂志, 2015, 34(2):454-462 Ye L, Jiang X M, Mao X X, et al. Effects of temperature, light intensity and salinity on the growth, total lipid and fatty acid of Phaeodactylum tricornutum mutant[J]. Chinese Journal of Ecology, 2015, 34(2):454-462(in Chinese)
Lepetit B, Gélin G, Lepetit M, et al. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis[J]. The New Phytologist, 2017, 214(1):205-218 Geider R J, Osbonie B A, Raven J A. Growth, photosynthesis and maintenance metabolic cost in the diatom Phaeodactylum tricornutum at very low light levels 1[J]. Journal of Phycology, 1986, 22(1):39-48 Nur M M A, Muizelaar W, Boelen P, et al. Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent[J]. Journal of Applied Phycology, 2019, 31(1):111-122 连鹏, 葛利云, 邓欢欢, 等. 两种喹诺酮类抗生素对亚心形扁藻的毒性效应研究[J]. 环境科学与管理, 2014, 39(5):46-48 Lian P, Ge L Y, Deng H H, et al. Toxic effects of two quinolone antibiotics on Platymonas subcordiformis[J]. Environmental Science and Management, 2014, 39(5):46-48(in Chinese)
刘滨扬. 红霉素、环丙沙星和磺胺甲噁唑对羊角月牙藻的毒性效应及其作用机理[D]. 广州:暨南大学, 2011:71 Liu B Y. Toxic effects and its mechanism of erythromycin, ciprofloxacin and sulfamethoxazole to Selenastrum capricornutum[D]. Guangzhou:Jinan University, 2011:71(in Chinese)
计量
- 文章访问数: 1679
- HTML全文浏览数: 1679
- PDF下载数: 65
- 施引文献: 0