微生物吸附去除重金属效率与应用研究综述
Efficiency and Application of Microbial-sorption Removal of Heavy Metals: A Review
-
摘要: 重金属因具毒性、易生物富集且不可生物降解等特性,其污染治理是环境领域的热点和难点。传统物理化学方法不同程度地存在着投资大、适用范围窄、易产生二次污染等问题,而基于微生物的生物吸附具备成本低、效率高、环境友好等优势,是重金属水污染治理领域的研究热点。基于前期研究,本文系统综述不同微生物(细菌、真菌和藻类等)对重金属离子(Pb2+、As3+/As5+、Cd2+、Cr3+/Cr6+、Cu2+和Zn2+)的吸附方式(胞外吸附、表面吸附和胞内吸附)、吸附去除效率、吸附机理(胞外沉淀、离子交换、表面络合、物理吸附、氧化还原、无机微沉淀和胞内积累等)和吸附影响因素(微生物种类与状态、重金属离子初始浓度、吸附时间、共存离子和环境因素等)。此外,亦对吸附后微生物材料中重金属的回收及实际应用中的常见问题(微生物比表面积小、菌种选育耗时、易受外界环境影响、吸附重金属后的微生物不易分离回收、微生物吸附剂对重金属的特异性选择等)进行了系统探究,并提出了一系列提高微生物吸附效率的改进措施(物理化学改性、生物改性和固定化)。综述内容可为提高微生物吸附去除重金属效率及其广泛应用提供理论依据和技术参考。Abstract: Heavy metals are toxic, bioaccumulative and non-biodegradable, rendering its treatment being a challenge of environmental issues. Traditional physical and chemical treatment methods (electrochemical treatment, membrane treatment, chemical precipitation, evaporation concentration, ion exchange, chemical redox and activated carbon/silica gel adsorption) are restricted during application due to the huge investment, limited application scope and high secondary-pollution risk. However, microbe-based sorption is an ideal remediation strategy to remove heavy metals from contaminated water via the chemical composition or structural properties of the microbe cell or its secretions. Microbes can adsorb heavy metal ions and both microbial adsorbents and the adsorbed heavy metals can be recovered. This method shows traits of low cost, high efficiency and being environmental friendly, thus has attracted increasing attention and been widely used in treatment of heavy metals-polluted water. Though there are reports about mechanisms and applications of microbial-sorption removal of heavy metals, the influencing factors during practical application and strategies for further improving removal efficiency are poorly summarized. Hence, it is important to understand the processes influencing heavy metals biosorption removal by microbes, thereby developing effective biotechnologies to enhance the removal of heavy metals from water. Therefore, basing on summary of previous studies, this paper systematically summarize information on biosorption processes of heavy metals (Pb2+, As3+/As5+, Cd2+, Cr3+/Cr6+, Cu2+, and Zn2+) by different microbes (bacteria, fungi, and algae), including biosorption types (extracellular adsorption, surface adsorption and intracellular adsorption), biosorption removal efficiency, biosorption mechanisms (extracellular precipitation, ion exchange, surface complexation, physical adsorption, redox, inorganic microprecipitation and intracellular accumulation), and the associated influencing factors (microbial species and status, initial concentration of heavy metal ions, reaction time, coexisting ions, environmental factors). Since the limitation during practical application and the necessity to recover heavy metal sources, the common problems during practical application (limited specific surface area of microbes, time-consuming breeding process of strains, vulnerable for external environment changes, difficulties in separating and recovering microbes from solution, selective biosorprtion of specific heavy metals, etc.) and methods to recover heavy metals from the microbial materials after biosorption are also illustrated. In addition, methods or strategies to improve microbial-sorption efficiencies including physical and chemical modification, biological modification and immobilization are proposed. Moreover, further researches and suggestions for improving biosorption efficiency including screening heavy metals high-resistant microbes, constructing effective microbe strains by molecular biotechnologies, developing microbial adsorbent with high specific surface area are proposed. The information in this review provides theoretical bases and technical supports for improving the efficiency of microbe-based biosorption removal of heavy metals from polluted water and helps to better understand the mechanisms and limitations of biosorption process thus to enhance its practical application.
-
Key words:
- heavy metals /
- biosorption /
- water treatment /
- physico-chemical modification /
- biological modification
-
Fu F L, Wang Q. Removal of heavy metal ions from wastewaters:A review[J]. Journal of Environmental Management, 2011, 92(3):407-418 Bilgin A, Konanç M U. Evaluation of surface water quality and heavy metal pollution of Coruh River Basin (Turkey) by multivariate statistical methods[J]. Environmental Earth Sciences, 2016, 75(12):1029 王建龙, 韩英健, 钱易. 微生物吸附金属离子的研究进展[J]. 微生物学通报, 2000, 27(6):449-452 张玉刚, 龙新宪, 陈雪梅. 微生物处理重金属废水的研究进展[J]. 环境科学与技术, 2008, 31(6):58-63 Zhang Y G, Long X X, Chen X M. Recent advances in research of treating heavy-metal containing wastewater by microorganism[J]. Environmental Science & Technology, 2008, 31(6):58-63(in Chinese)
熊婧. 乳酸菌对重金属镉的耐受性和吸附机制研究[D]. 广州:暨南大学, 2015:9 Xiong J. Mechanism of cadmium resistance of lactic acid bacteria[D]. Guangzhou:Jinan University, 2015:9(in Chinese) 江娜, 宁增平, 郭圆, 等. 环境pH对微生物生物膜吸附重金属的影响研究进展[J]. 地球与环境, 2021, 49(2):216-226 Jiang N, Ning Z P, Guo Y, et al. Research progress of the effect of pH on the adsorption of heavy metals by microbial biofilms[J]. Earth and Environment, 2021, 49(2):216-226(in Chinese)
Rangabhashiyam S, Balasubramanian P. Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae[J]. Bioresource Technology Reports, 2019, 5:261-279 Rushhoft C C. The possibilities of disposal of radioactive wastes by biological treatment methods[J]. Sewage Works Journal, 1949, 21(5):877-883 Strandberg G W, Shumate S E, Parrott J R. Microbial cells as biosorbents for heavy metals:Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 1981, 41(1):237-245 Mullen M D, Wolf D C, Ferris F G, et al. Bacterial sorption of heavy metals[J]. Applied and Environmental Microbiology, 1989, 55(12):3143-3149 Golab Z, Orlowska B, Smith R W. Biosorption of lead and uranium by Streptomyces sp.[J]. Water, Air, and Soil Pollution, 1991, 60(1):99-106 Volesky B, Prasetyo I. Cadmium removal in a biosorption column[J]. Biotechnology and Bioengineering, 1994, 43(11):1010-1015 Volesky B, May-Phillips H A. Biosorption of heavy metals by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 1995, 42(5):797-806 张建民, 宗刚, 朱宝瑜, 等. 生物处理电镀铬废水的研究[J]. 工业水处理, 1999, 19(5):21-22 Teclu D, Tivchev G, Laing M, et al. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria[J]. Water Research, 2008, 42(19):4885-4893 Hua J Q, Zhang R, Chen R P, et al. Energy-saving preparation of a bioflocculant under high-salt condition by using strain Bacillus sp. and the interaction mechanism towards heavy metals[J]. Chemosphere, 2021, 267:129324 Wang X, Li D P, Gao P, et al. Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(Ⅱ) stress from genomic perspective[J]. Ecotoxicology and Environmental Safety, 2020, 198:110655 Günan Yücel H, Aksu Z, Usta T, et al. Novel application of isolated Micrococcus luteus and Bacillus pumilus for Li+ ion biosorption:A comparative study[J]. Preparative Biochemistry & Biotechnology, 2021, 51(9):892-900 Chang Q, Ali A, Su J F, et al. Simultaneous removal of nitrate, manganese, and tetracycline by Zoogloea sp. MFQ7:Adsorption mechanism of tetracycline by biological precipitation[J]. Bioresource Technology, 2021, 340:125690 Xu X Y, Hao R X, Xu H, et al. Removal mechanism of Pb(Ⅱ) by Penicillium polonicum:Immobilization, adsorption, and bioaccumulation[J]. Scientific Reports, 2020, 10(1):9079 Saravanan A, Jeevanantham S, Senthil Kumar P, et al. Enhanced Zn(Ⅱ) ion adsorption on surface modified mixed biomass-Borassus flabellifer and Aspergillus tamarii:Equilibrium, kinetics and thermodynamics study[J]. Industrial Crops and Products, 2020, 153:112613 Naeimi B, Foroutan R, Ahmadi B, et al. Pb(Ⅱ) and Cd(Ⅱ) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified Rhizopus oryzae biomass[J]. Materials Research Express, 2018, 5(4):045501 de Rossi A, Rigueto C V T, Dettmer A, et al. Synthesis, characterization, and application of Saccharomyces cerevisiae/alginate composites beads for adsorption of heavy metals[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):104009 Figueira M M, Volesky B, Ciminelli V S T, et al. Biosorption of metals in brown seaweed biomass[J]. Water Research, 2000, 34(1):196-204 冯伟, 王雪青, 张译丹, 等. 丝瓜络固定化非活性颤藻对Pb2+的吸附特性[J]. 环境化学, 2020, 39(4):1129-1136 Feng W, Wang X Q, Zhang Y D, et al. Biosorption characteristics of non-living Oscillatoria lutea immobilized in loofa sponge for removal of Pb2+[J]. Environmental Chemistry, 2020, 39(4):1129-1136(in Chinese)
罗晓暄, 魏群, 廖运生, 等. 活性微藻对镉去除及其解吸剂的优选研究[J]. 水处理技术, 2021, 47(3):12-15 Luo X X, Wei Q, Liao Y S, et al. The study of cadmium (Cd) removal by living algae with optimal selection of Cd desorption reagents in wastewater treatment[J]. Technology of Water Treatment, 2021, 47(3):12-15(in Chinese)
宋旭, 林陶, 夏品华, 等. 沉水植物附植生物膜藻类组成及重金属累积特征[J]. 湖泊科学, 2019, 31(5):1268-1278 Song X, Lin T, Xia P H, et al. Algae composition and accumulation characteristics of heavy metals in epiphytic bioflioms of submerged macrophytes[J]. Journal of Lake Sciences, 2019, 31(5):1268-1278(in Chinese)
Hamdan A M, Abd-El-Mageed H, Ghanem N. Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture[J]. Scientific Reports, 2021, 11:9314 Pavel K, Martina M, Tomas M. Microbial Biosorption of Metals[M]. Berlin:Springer Science Business Media B.V., 2011:320 Quintelas C, Pereira R, Kaplan E, et al. Removal of Ni(Ⅱ) from aqueous solutions by an Arthrobacter viscosus biofilm supported on zeolite:From laboratory to pilot scale[J]. Bioresource Technology, 2013, 142:368-374 Park D, Yun Y S, Park J M. The past, present, and future trends of biosorption[J]. Biotechnology and Bioprocess Engineering, 2010, 15(1):86-102 Carpio I E, Machado-Santelli G, Sakata S K, et al. Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor[J]. Water Research, 2014, 62:156-166 Wang Y Y, Liu Y D, Zheng K X, et al. The role of extracellular polymeric substances (EPS) in the reduction of Cr(Ⅵ) by Pannonibacter phragmitetus BB[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):106163 Wang J L, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae:A review[J]. Biotechnology Advances, 2006, 24(5):427-451 Lei D Y, Liu Z, Peng Y H, et al. Biosorption of copper, lead and nickel on immobilized Bacillus coagulans using experimental design methodologies[J]. Annals of Microbiology, 2013, 64(3):1371-1384 麻淳雅, 朱健, 汤思敏, 等. 耐砷芽孢杆菌对As3+的吸附性能与机制研究[J]. 环境科学学报, 2020, 40(8):2758-2770 Ma C Y, Zhu J, Tang S M, et al. Study on adsorption properties and mechanism of As3+ by an arsenic-resistant Bacillus strain[J]. Acta Scientiae Circumstantiae, 2020, 40(8):2758-2770(in Chinese)
张金帆, 杜春艳, 文晓凤, 等. 固定化地衣芽孢杆菌对Pb2+的吸附特性研究[J]. 环境科学与技术, 2018, 41(11):87-92 Zhang J F, Du C Y, Wen X F, et al. A novel biosorbent prepared by fixed Bacillus licheniformis for Pb2+ removal from wastewater[J]. Environmental Science & Technology, 2018, 41(11):87-92(in Chinese)
望子龙, 罗学刚, 司慧, 等. 锰、砷对地衣芽孢杆菌铀富集的影响[J]. 生物技术通报, 2018, 34(6):164-171 Wang Z L, Luo X G, Si H, et al. Effects of manganese and arsenic on uranium enrichment of Bacillus licheniformis[J]. Biotechnology Bulletin, 2018, 34(6):164-171(in Chinese)
范瑞梅, 张保国, 张洪勋, 等. 克劳氏芽孢杆菌(Bacillus clausii S-4)吸附Zn2+的研究[J]. 环境工程学报, 2007, 1(8):44-47 Fan R M, Zhang B G, Zhang H X, et al. Study on adsorption of Zn2+ by Bacillus clausii S-4[J]. Chinese Journal of Environmental Engineering, 2007, 1(8):44-47(in Chinese)
Vishan I, Saha B, Sivaprakasam S, et al. Evaluation of Cd(Ⅱ) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK:Biosorption kinetics, thermodynamics and mechanism[J]. Environmental Technology & Innovation, 2019, 14:100323 Oves M, Khan M S, Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil[J]. Saudi Journal of Biological Sciences, 2013, 20(2):121-129 Giri A K, Patel R K, Mahapatra S S. Artificial neural network (ANN) approach for modelling of arsenic (Ⅲ) biosorption from aqueous solution by living cells of Bacillus cereus biomass[J]. Chemical Engineering Journal, 2011, 178:15-25 林梵宇, 王润萍, 易志伟, 等. 海洋解木糖赖氨酸芽孢杆菌JZ008对重金属Cd2+、Cr3+和Cu2+的吸附作用[J]. 应用海洋学学报, 2018, 37(3):387-394 Lin F Y, Wang R P, Yi Z W, et al. Biosorption of heavy metals cadmium, chromium, copper by marine bacterium Lysinibacillus xylanilyticus strain JZ008[J]. Journal of Applied Oceanography, 2018, 37(3):387-394(in Chinese)
高玉振, 赵林, 刘德飞, 等. 胶质芽孢杆菌对重金属Cr(Ⅵ)的吸附[J]. 河南科技大学学报:自然科学版, 2015, 36(4):78-81 , 9 Gao Y Z, Zhao L, Liu D F, et al. Adsorption of Cr(Ⅵ) by colloid Bacillus[J]. Journal of Henan University of Science & Technology:Natural Science, 2015, 36(4):78-81, 9(in Chinese)
代淑娟, 王玉娟, 魏德洲, 等. 枯草芽孢杆菌对电镀废水中镉的吸附[J]. 有色金属, 2010, 62(3):156-159 Dai S J, Wang Y J, Wei D Z, et al. Biosorption of cadmium from cadmium-containing electroplating wastewater by Bacillus subtilis[J]. Nonferrous Metals, 2010, 62(3):156-159(in Chinese)
徐淑霞, 杜文涛, 王晓雅, 等. 1株耐Cd细菌的分离、鉴定及其吸附特性研究[J]. 河南农业科学, 2017, 46(5):71-76 , 83 Xu S X, Du W T, Wang X Y, et al. Isolation, identification and adsorption characteristics of a Cd-tolerant bacterium[J]. Journal of Henan Agricultural Sciences, 2017, 46(5):71-76, 83(in Chinese)
徐韶足, 王瑶, 毕文龙, 等. 一种改性微生物吸附剂的制备及其对镉离子的吸附特性[J]. 环境科学学报, 2021, 41(4):1342-1350 Xu S Z, Wang Y, Bi W L, et al. Preparation of a modified microbial adsorbent and its adsorption characteristics for Cd2+[J]. Acta Scientiae Circumstantiae, 2021, 41(4):1342-1350(in Chinese)
Liu T, Hou J H, Wang J B, et al. Biosorption of heavy metals from aqueous solution by the novel biosorbent Pectobacterium sp. ND2[J]. Environmental Progress & Sustainable Energy, 2018, 37(3):968-974 佘晨兴, 许旭萍, 沈雪贤, 等. 球衣菌对重金属离子的耐受性及其吸附能力[J]. 应用与环境生物学报, 2005, 11(1):90-92 She C X, Xu X P, Shen X X, et al. Biosorption and tolerance of Sphaerotilus natans to heavy metal ion[J]. Chinese Journal of Applied and Environmental Biology, 2005, 11(1):90-92(in Chinese)
王鹤. 一株重金属耐受菌的分离鉴定及其生物吸附Zn2+特性与机理研究[D]. 厦门:集美大学, 2016:25-41 Wang H. Isolation and identification of a heavy metal resistance strain and its characterization and mechanism of zinc biosorption[D]. Xiamen:Jimei University, 2016:25 -41(in Chinese)
黄民生, 施华丽, 郑乐平. 曲霉对水中重金属的吸附去除[J]. 化工装备技术, 2001, 22(4):17-21 赵琪琪, 李海红, 安凤秋. 抗铅真菌的筛选、鉴定及其对Pb2+的吸附特性[J]. 西南农业学报, 2020, 33(2):401-407 Zhao Q Q, Li H H, An F Q. Isolation and identification of lead-resistant fungus and its adsorption characteristics to Pb2+[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(2):401-407(in Chinese)
Noormohamadi H R, Fat'hi M R, Ghaedi M, et al. Potentiality of white-rot fungi in biosorption of nickel and cadmium:Modeling optimization and kinetics study[J]. Chemosphere, 2019, 216:124-130 余甜甜, 张丽杰, 马争发, 等. 高抗镉球孢白僵菌筛选及其吸附性能研究[J]. 重庆理工大学学报:自然科学, 2021, 35(1):214-221 Yu T T, Zhang L J, Ma Z F, et al. Screening of a strain of Beauveria bassiana with high resistance to cadmium and its adsorption property[J]. Journal of Chongqing University of Technology:Natural Science, 2021, 35(1):214-221(in Chinese)
郑爱芳, 吴甘霖, 李伟娟, 等. 一株野生抗铜大型真菌对铜离子的吸附作用[J]. 生物学杂志, 2020, 37(1):72-76 Zheng A F, Wu G L, Li W J, et al. The copper ion biosorption of a wild macrofungi with copper resistance[J]. Journal of Biology, 2020, 37(1):72-76(in Chinese)
王翀. 啤酒酵母对重金属Cr(Ⅲ)生物转化及生物吸附的研究[D]. 西安:西北大学, 2005:26-31 Wang C. Studies of Cr(Ⅲ) biotransformation and biosorption by brewer's yeast[D]. Xi'an:Northwest University, 2005:26 -31(in Chinese)
代淑娟, 魏德洲, 白丽梅, 等. 生物吸附-沉降法去除电镀废水中镉[J]. 中国有色金属学报, 2008, 18(10):1945-1950 Dai S J, Wei D Z, Bai L M, et al. Removing cadmium from cadmium-containing electroplating wastewater by biosorption-sedimentation[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(10):1945-1950(in Chinese)
Say R. Biosorption of cadmium(Ⅱ), lead(Ⅱ) and copper(Ⅱ) with the filamentous fungus Phanerochaete chrysosporium[J]. Bioresource Technology, 2001, 76(1):67-70 Pokhrel D, Viraraghavan T. Arsenic removal from an aqueous solution by a modified fungal biomass[J]. Water Research, 2006, 40(3):549-552 许生辉. 嗜酸氧化亚铁硫杆菌对不同环境条件中砷的生物吸附及其应用研究[D]. 兰州:兰州大学, 2018:16 Xu S H. Biosorption of arsenic in different environmental conditions using Acidithiobacillus ferrooxidans and its application[D]. Lanzhou:Lanzhou University, 2018:16(in Chinese) 苏秀娟, 朱一民, 沈岩柏, 等. 悬浮酵母菌对重金属Cd2+的吸附研究[J]. 东北大学学报, 2005, 26(11):90-93 Su X J, Zhu Y M, Shen Y B, et al. Effect of biosorption of Cd2+ by suspended saccharomycete biomass[J]. Journal of Northeastern University, 2005, 26(11):90-93(in Chinese)
张亚娟. 黑根霉菌对重金属废水的生物吸附及其固定化技术[J]. 环保科技, 2009, 15(3):30-34 , 42 Zhang Y J. Studies on biosorption used in heavy metal contaminated wastewater treatment and immobilized of Rhizopus stolonifer[J]. Environmental Protection and Technology, 2009, 15(3):30-34, 42(in Chinese)
芦亚男. 海洋微紫青霉菌P1的Cr(Ⅵ)吸附特性及全基因组学的研究[D]. 桂林:桂林理工大学, 2020:25-37 Lu Y N. A research of Cr(Ⅵ) adsorption characteristics and whole genomics of Penicillium janthinellum P1[D]. Guilin:Guilin University of Technology, 2020 :25-37(in Chinese)
肖宁, 陈强, 裴浩言, 等. 酵母菌Y17吸附Cu2+的影响因素及吸附机理研究[J]. 微生物学通报, 2008, 35(5):772-776 Xiao N, Chen Q, Pei H Y, et al. Influence factors and absorbing mechanics of copper ion by yeast strain Y17[J]. Microbiology, 2008, 35(5):772-776(in Chinese)
Rangsayator N, Upatham E S, Kruatrachue M, et al. Phytoremediation potential of Spirulina (Arthrospira) platensis:Biosorption and toxicity studies of cadmium[J]. Environmental Pollution, 2002, 119(1):45-53 王坎, 李政, 熊晶, 等. 水华蓝藻生物质对Cu2+的吸附动力学及吸附平衡研究[J]. 环境科学与技术, 2011, 34(S2):47-50 Wang K, Li Z, Xiong J, et al. Kinetics and equilibrium of Cu2+ biosorption by cyanobacterial bloom biomass[J]. Environmental Science & Technology, 2011, 34(S2):47-50(in Chinese)
孙东红, 于红凤, 邹宁. 鱼腥藻对重金属污水中Zn2+的吸附研究[J]. 安徽农业科学, 2015, 43(36):164-166 Sun D H, Yu H F, Zou N. Adsorption of Zn2+ from electroplating wastewater by Anabaena sp.[J]. Journal of Anhui Agricultural Sciences, 2015, 43(36):164-166(in Chinese)
Lodeiro P, Cordero B, Barriada J L, et al. Biosorption of cadmium by biomass of brown marine macroalgae[J]. Bioresource Technology, 2005, 96(16):1796-1803 周洪英, 李娜, 王学松, 等. 3种常见海藻对废水中铜的生物吸附性能[J]. 江苏农业科学, 2012, 40(1):309-312 林海, 李真, 董颖博, 等. 修复钒镉复合污染水体的菌株分离及性能[J]. 中南大学学报:自然科学版, 2021, 52(5):1418-1426 Lin H, Li Z, Dong Y B, et al. Isolation and characterization of bacteria for vanadium and cadmium polluted water remediation[J]. Journal of Central South University:Science and Technology, 2021, 52(5):1418-1426(in Chinese)
黄浩杰. 三种微生物菌种对镉的吸附作用及机理研究[D]. 太原:山西大学, 2020:33-34 Huang H J. Comparison of adsorption capacity and adsorption mechanism of three microorganisms to cadmium[D]. Taiyuan:Shanxi University, 2020:33 -34(in Chinese)
余雪梅. 耐镉芽孢杆菌对Cd2+的吸附特性及其机理研究[D]. 成都:成都理工大学, 2019:7 Yu X M. Characterization and mechanism of Cd2+ adsorption by cadmium-tolerant Bacillus sp. PFYN01[D]. Chengdu:Chengdu University of Technology, 2019 :7(in Chinese)
孙嘉龙, 李梅, 曾德华. 微生物对重金属的吸附、转化作用[J]. 贵州农业科学, 2007, 35(5):147-150 Sun J L, Li M, Zeng D H. Study on adsorption and transformation of heavy metals by microbes[J]. Guizhou Agricultural Sciences, 2007, 35(5):147-150(in Chinese)
Padmavathy V, Vasudevan P, Dhingra S C. Biosorption of nickel(Ⅱ) ions on Baker's yeast[J]. Process Biochemistry, 2003, 38(10):1389-1395 Ledin M. Accumulation of metals by microorganisms-Processes and importance for soil systems[J]. Earth-Science Reviews, 2000, 51(1-4):1-31 Bayramoglu G, Arica M Y. Preparation of a composite biosorbent using Scenedesmus quadricauda biomass and alginate/polyvinyl alcohol for removal of Cu(Ⅱ) and Cd(Ⅱ) ions:Isotherms, kinetics, and thermodynamic studies[J]. Water, Air, & Soil Pollution, 2011, 221(1):391-403 Mata Y N, Blázquez M L, Ballester A, et al. Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal[J]. Journal of Hazardous Materials, 2010, 178(1-3):243-248 Sheng P X, Ting Y P, Chen J P, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass:Characterization of biosorptive capacity and investigation of mechanisms[J]. Journal of Colloid and Interface Science, 2004, 275(1):131-141 Romera E, González F, Ballester A, et al. Biosorption with algae:A statistical review[J]. Critical Reviews in Biotechnology, 2006, 26(4):223-235 Bakkaloglu I, Butter T J, Evison L M, et al. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption[J]. Water Science and Technology, 1998, 38(6):269-277 Kogej A, Pavko A. Comparison of Rhizopus nigricans in a pelleted growth form with some other types of waste microbial biomass as biosorbents for metal ions[J]. World Journal of Microbiology & Biotechnology, 2001, 17(7):677-685 Vianna L, Andrade M, Nicoli J R. Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption[J]. World Journal of Microbiology & Biotechnology, 2000, 16(5):437-440 唐多利. 明胶废水中耐钙微生物的筛选、鉴定及其钙吸附研究[D]. 兰州:兰州理工大学, 2020:5-7 Tang D L. Screening, identification and calcium adsorption of calcium-resistant microorganisms in gelatin wastewater[D]. Lanzhou:Lanzhou University of Technology, 2020:5 -7(in Chinese)
周东琴, 魏德洲. 沟戈登氏菌对重金属的生物吸附-浮选和解吸性能[J]. 环境科学, 2006, 27(5):960-964 Zhou D Q, Wei D Z. Biosorptive-flotation and desorption operation of heavy metals from wastewater effluents by Gordona amarae[J]. Environmental Science, 2006, 27(5):960-964(in Chinese)
张梦梅, 刘书亮. 乳酸菌吸附重金属的影响因素、机理及应用研究进展[J]. 食品科学, 2018, 39(15):316-322 Zhang M M, Liu S L. Progress in research on the biosorption of heavy metals by lactic acid bacteria:Influencing factors, mechanism and application[J]. Food Science, 2018, 39(15):316-322(in Chinese)
Ghosh A, Ghosh Dastidar M, Sreekrishnan T R. Recent advances in bioremediation of heavy metals and metal complex dyes:Review[J]. Journal of Environmental Engineering, 2016, 142(9):1-14 李进. 铅锌尾砂矿耐性微生物的筛选及其吸附机理研究[D]. 长沙:中南林业科技大学, 2015:51 Li J. Screening of tolerant microorganism from lead-zinc tailing and its biosorption mechanism[D]. Changsha:Central South University of Forestry & Technology, 2015:51(in Chinese) 邹春艳, 连宾, 臧淑艳, 等. 细菌-矿物复合吸附剂对重金属离子的吸附与解吸作用[J]. 安全与环境学报, 2011, 11(2):43-46 Zou C Y, Lian B, Zang S Y, et al. Adsorption and desorption of heavy metal ions by bacteria-contained mineral composite adsorbents[J]. Journal of Safety and Environment, 2011, 11(2):43-46(in Chinese)
孙士顺. 重金属铜抗性细菌的筛选鉴定、吸附特性与机理研究[D]. 长春:东北师范大学, 2016:39-40 Sun S S. Copper-resistant bacterium isolation, biosorption characteristics and mechanism[D]. Changchun:Northeast Normal University, 2016:39 -40(in Chinese)
范蕾, 宋秋芳, 杨峥, 等. 吸附重金属材料的解吸附实验研究[C]//中国环境科学学会, 中南大学, 中南林业科技大学, 湖南农业大学. 第十届重金属污染防治技术及风险评价研讨会论文集. 长沙:中国环境科学学会, 2020:4 黄民生, 郑乐平, 朱莉. 微生物对重金属的吸附与解吸[J]. 化工装备技术, 2000, 21(2):17-22 Ma H W, Liao X P, Liu X, et al. Recovery of platinum(Ⅳ) and palladium(Ⅱ) by bayberry tannin immobilized collagen fiber membrane from water solution[J]. Journal of Membrane Science, 2006, 278(1-2):373-380 尹敬群. 风化壳淋积型稀土矿浸出液中稀土离子的微生物吸附研究[D]. 南昌:南昌大学, 2012:35-36 Yin J Q. Study on microbe adsorption of rare earths from the leach liquid of the weathered crust elution-deposited rare earth ore[D]. Nanchang:Nanchang University, 2012:35 -36(in Chinese)
刘金香, 葛玉杰, 谢水波, 等. 改性微生物吸附剂在重金属废水处理中的应用进展[J]. 微生物学通报, 2020, 47(3):941-951 Liu J X, Ge Y J, Xie S B, et al. Application progress of modified microbial adsorbents for the treatment of heavy metal wastewater[J]. Microbiology China, 2020, 47(3):941-951(in Chinese)
Velásquez L, Dussan J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus[J]. Journal of Hazardous Materials, 2009, 167(1-3):713-716 Mohapatra R K, Parhi P K, Pandey S, et al. Active and passive biosorption of Pb(Ⅱ) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202:Kinetics and isotherm studies[J]. Journal of Environmental Management, 2019, 247:121-134 刘树丽. 四种微生物吸附剂的制备及其对废水中重金属的去除特性与机理研究[D]. 昆明:昆明理工大学, 2019:14 Liu S L. Preparation of four microbial adsorbents and their removal characteristics and mechanisms for heavy metals from wastewater[D]. Kunming:Kunming University of Science and Technology, 2019:14(in Chinese) Mungasavalli D P, Viraraghavan T, Jin Y C. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger:Batch and column studies[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 301(1-3):214-223 Yu J X, Tong M, Sun X M, et al. Cystine-modified biomass for Cd(Ⅱ) and Pb(Ⅱ) biosorption[J]. Journal of Hazardous Materials, 2007, 143(1-2):277-284 Mehta S K, Gaur J P. Use of algae for removing heavy metal ions from wastewater:Progress and prospects[J]. Critical Reviews in Biotechnology, 2005, 25(3):113-152 Fomina M, Gadd G M. Biosorption:Current perspectives on concept, definition and application[J]. Bioresource Technology, 2014, 160:3-14 Wang J L, Chen C. Chitosan-based biosorbents:Modification and application for biosorption of heavy metals and radionuclides[J]. Bioresource Technology, 2014, 160:129-141 Bouabidi Z B, El-Naas M H, Zhang Z E. Immobilization of microbial cells for the biotreatment of wastewater:A review[J]. Environmental Chemistry Letters, 2019, 17(1):241-257 Partovinia A, Rasekh B. Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(1):1-38 杨宗政, 许文帅, 吴志国, 等. 微生物固定化及其在环境污染治理中的应用研究进展[J]. 微生物学通报, 2020, 47(12):4278-4292 Yang Z Z, Xu W S, Wu Z G, et al. Microbial immobilization in environmental pollution treatment:A review[J]. Microbiology China, 2020, 47(12):4278-4292(in Chinese)
Noori M, Sadeghi S. Novel immobilization of Pseudomonas aeruginosa on graphene oxide and its applications to biodegradation of phenol existing in industrial wastewaters[J]. Journal of Water Chemistry and Technology, 2019, 41(6):363-370 Hassan M E, Yang Q Y, Xiao Z G, et al. Impact of immobilization technology in industrial and pharmaceutical applications[J]. 3 Biotech, 2019, 9(12):440 Ogawa M, Bisson L F, García-Martínez T, et al. New insights on yeast and filamentous fungus adhesion in a natural co-immobilization system:Proposed advances and applications in wine industry[J]. Applied Microbiology and Biotechnology, 2019, 103(12):4723-4731 张杰, 朱晓丽, 尚小清, 等. 生物炭固定化解磷菌对Pb2+的吸附特性[J]. 环境污染与防治, 2019, 41(4):387-392 Zhang J, Zhu X L, Shang X Q, et al. Adsorption characteristics of Pb2+ on biochar immobilized phosphate-solubilizing bacteria[J]. Environmental Pollution & Control, 2019, 41(4):387-392(in Chinese)
赵锐. 耐Cr(Ⅲ)微生物的固定化及吸附Cr(Ⅲ)的特性研究[D]. 西安:陕西科技大学, 2019:41-47 Zhao R. Study on immobilization and adsorption of Cr(Ⅲ) by Cr(Ⅲ) resistant microorganisms[D]. Xi'an:Shaanxi University of Science & Technology, 2019:41 -47(in Chinese)
Iqbal M, Edyvean R G J. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium[J]. Minerals Engineering, 2004, 17(2):217-223 Zhang X, Su H J, Tan T W, et al. Study of thermodynamics and dynamics of removing Cu(Ⅱ) by biosorption membrane of Penicillium biomass[J]. Journal of Hazardous Materials, 2011, 193:1-9 Sathvika T, Manasi, Rajesh V, et al. Microwave assisted immobilization of yeast in cellulose biopolymer as a green adsorbent for the sequestration of chromium[J]. Chemical Engineering Journal, 2015, 279:38-46 芦炳炎. 磁性微生物复合材料的制备及其对水体中重金属吸附效果[D]. 湘潭:湘潭大学, 2014:25-27 Lu B Y. Preparation of magnetic absorbents with microorganism and their characteristics on the heavy metals wastewater treatment[D]. Xiangtan:Xiangtan University, 2014:25 -27(in Chinese)
刘玉玲, 朱虎成, 彭鸥, 等. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学, 2020, 41(9):4322-4332 Liu Y L, Zhu H C, Peng O, et al. Adsorption of cadmium and arsenic by corn stalk biochar solidified microorganism[J]. Environmental Science, 2020, 41(9):4322-4332(in Chinese)
Isani G, Carpenè E. Metallothioneins, unconventional proteins from unconventional animals:A long journey from nematodes to mammals[J]. Biomolecules, 2014, 4(2):435-457 赵清, 刘相梅, 边疆, 等. 抗砷载体的构建及在喜温硫杆菌中的接合转移[J]. 生物技术, 2005, 15(3):19-21 Zhao Q, Liu X M, Bian J, et al. Construction of the arsenic resistance plasmids and the conjugative transfer to Thiobacillus caldus[J]. Biotechnology, 2005, 15(3):19-21(in Chinese)
Boubakri S, Djebbi M A, Bouaziz Z, et al. Nanoscale zero-valent iron functionalized Posidonia oceanica marine biomass for heavy metal removal from water[J]. Environmental Science and Pollution Research International, 2017, 24(36):27879-27896 Arshadi M, Abdolmaleki M K, Mousavinia F, et al. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(Ⅱ) and Hg(Ⅱ) from water:Aging time and mechanism study[J]. Journal of Colloid and Interface Science, 2017, 486:296-308 Nguyen Thanh D, Singh M, Ulbrich P, et al. Perlite incorporating γ-Fe2O3 and α-MnO2 nanomaterials:Preparation and evaluation of a new adsorbent for As(Ⅴ) removal[J]. Separation and Purification Technology, 2011, 82:93-101 尹华, 陈烁娜, 叶锦韶. 微生物吸附剂[M]. 北京:科学出版社, 2015:19 刘金香, 熊芬, 谢水波, 等. 纳米Fe3O4/黑曲霉磁性微球对U(Ⅵ)的吸附性能及机制[J]. 复合材料学报, 2017, 34(12):2826-2833 Liu J X, Xiong F, Xie S B, et al. Adsorption characteristic and mechanism of uranium(Ⅵ) by nano Fe3O4/Aspergillus niger magnetic microspheres[J]. Acta Materiae Compositae Sinica, 2017, 34(12):2826-2833(in Chinese)
计量
- 文章访问数: 5854
- HTML全文浏览数: 5854
- PDF下载数: 249
- 施引文献: 0