福建石兜水库产毒拉氏尖头藻(Raphidiopsis raciborskii)遗传多样性
Genetic Diversity of Toxin-Producing Raphidiopsis raciborskii (Cyanobacterium) Isolated from Shidou Reservoir in Fujian Province
-
摘要: 近几十年以来,全球内陆深水水体拉氏尖头藻(Raphidiopsis raciborskii)的检出率和水华事件日益增多,这种新型水华蓝藻具有产毒和无毒株系,其中能合成拟柱胞藻毒素(cylindrospermopsins,CYNs)的株系主要分布在澳大利亚和东南亚,严重威胁水生态系统和人类健康。本研究于2018年从福建省厦门市石兜水库分离、培养了4株拉氏尖头藻(XM1~XM4),对其形态、遗传多样性和产毒特征进行了研究。显微观察结果表明,4株拉氏尖头藻形态特征基本一致,细胞平均长度为3.79~4.26 μm,藻丝体呈直线型、平均长度为122~199 μm,在环境样品中可观察到异形胞(固氮细胞),使用富含氮的BG11培养基培养后异形胞会消失。酶联免疫吸附(ELISA)试剂盒测定显示,4株拉氏尖头藻均为产毒藻株;液相色谱串联质谱(LC-MS/MS)分析表明,4个藻株能同时合成CYN和脱氧拟柱胞藻毒素(deoxy-CYN),其中XM1、XM2和XM3藻株以CYN为主,在对数生长后期平均浓度为0.71~1.02 pg·cell-1,XM4则以deoxy-CYN为主,平均浓度为0.42 pg·cell-1。16S rRNA基因系统发育分析表明,XM2藻株与非洲藻株同源相似性较高,其他3株(XM1、XM3和XM4)与亚洲、欧洲的藻株同源相似性较高,表明石兜水库拉氏尖头藻种群遗传多样性较高。序列分析发现,XM2藻株具有完整的产CYN基因簇,但是部分关键基因发生了重排变异,cyrB和cyrI基因分别被分割成2部分和3部分,XM2藻株与浙江杭州藻株产毒基因簇最为相似。在气候变化和人类活动多重影响下,我国水源地水库产毒拉氏尖头藻的来源、传播扩散、遗传分化和生态效应有待进一步研究。Abstract: In recent decades, the detection of the cyanobacterium Raphidiopsis raciborskii in deep freshwaters has increased, and its blooms were influenced by global climate change and human activity. R. raphidiopsis can synthesize cylindrospermopsins (CYNs), a potent hepatotoxin, which seriously threatens aquatic ecosystems and human health. However, populations of R. raciborskii include both toxic and non-toxic strains in aquatic ecosystems, making risk assessment difficult and precise knowledge of local populations important. The CYNs-producing strains are currently only distributed in tropical and subtropical regions of Australia and Southeast Asia. Recently, toxic stains have been sporadically reported in South China, causing concern for aquatic health. In this study, four new R. raciborskii strains (XM1~XM4) from Shidou Reservoir, Xiamen City, Fujian Province, Southeast China were isolated and cultured in 2018. Their morphological, phylogenetic and toxin-production characteristics were investigated and compared. Our results showed that the morphological characteristics of the four strains of R. raciborskii were the same with straight trichome. The average vegetative cell length of the four strains was 3.79~4.26 μm, and the average trichome length ranged from 122 to 199 μm. Heterocysts (specialized nitrogen fixing cells) were observed in the field samples, but they gradually disappeared after culturing in nitrogen-rich medium (i.e. BG11). The enzyme linked immunosorbent assay (ELISA) indicated that the four strains could produce CYNs. LC-MS/MS analysis revealed that the four strains co-produced CYN and deoxy-cylindrospermopsin (deoxy-CYN). However, XM1, XM2 and XM3 strains mainly produced CYN with mean concentration ranged from 0.71 to 1.02 pg·cell-1, while XM4 strain mainly produced deoxy-CYN with mean concentration of 0.42 pg·cell-1. Phylogenetic analysis, using 16S rRNA sequence, showed that XM2 strain exhibited a higher homology with strains from Africa, while the other three strains (XM1, XM3 and XM4) had higher homology with Asian and European strains. The results suggest that the genetic diversity of the R. raciborskii population in Shidou Reservoir is high. Based on DNA sequencing, we found XM2 strain has the complete cyr gene cluster but gene rearrangement with the cyrB and cyrI genes spilt into two and three parts, respectively. The cyr gene cluster of XM2 strain exhibited a higher similarity with Hangzhou strains (China) than Australian strains. Further research is needed to clarify the strains' source and geographic dispersal, its genomic differentiation and evolution, and the ecological consequences of this bloom-forming R. raciborskii in China.
-
Key words:
- Fujian Province /
- reservoir /
- Raphidiopsis raciborskii /
- cylindrospermopsin /
- cyr gene cluster
-
-
Paerl H W, Otten T G. Environmental science. Blooms bite the hand that feeds them[J]. Science, 2013, 342(6157):433-434 Antunes J T, Leão P N, Vasconcelos V M. Cylindrospermopsis raciborskii:Review of the distribution, phylogeography, and ecophysiology of a global invasive species[J]. Frontiers in Microbiology, 2015, 6:473 Panou M, Zervou S K, Kaloudis T, et al. A Greek Cylindrospermopsis raciborskii strain:Missing link in tropic invader's phylogeography tale[J]. Harmful Algae, 2018, 80:96-106 Aguilera A, Gómez E B, Kaštovský J, et al. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria)[J]. Phycologia, 2018, 57(2):130-146 Komarek J, Kastovsky J, Mares J, et al. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach[J]. Preslia, 2014, 86(4):295-335 Mihali T K, Kellmann R, Muenchhoff J, et al. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis[J]. Applied and Environmental Microbiology, 2008, 74(3):716-722 Yang Y M, Yu G L, Chen Y X, et al. Four decades of progress in cylindrospermopsin research:The ins and outs of a potent cyanotoxin[J]. Journal of Hazardous Materials, 2021, 406:124653 Saker M L, Neilan B A, Griffiths D J. Two morphological forms of Cylindrospermopsis raciborskii (cyanobacteria) isolated from Solomon Dam, Palm Island, Queensland[J]. Journal of Phycology, 1999, 35(3):599-606 Burford M A, Davis T W, Orr P T, et al. Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii[J]. FEMS Microbiology Ecology, 2014, 89(1):135-148 Willis A, Chuang A W, Woodhouse J N, et al. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii[J]. Toxicon, 2016, 119:307-310 Gugger M, Molica R, Le Berre B, et al. Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents[J]. Applied and Environmental Microbiology, 2005, 71(2):1097-1100 Piccini C, Aubriot L, Fabre A, et al. Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes[J]. Harmful Algae, 2011, 10(6):644-653 Saker M L, Neilan B A. Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from Northern Australia[J]. Applied and Environmental Microbiology, 2001, 67(4):1839-1845 Moreira C, Fathalli A, Vasconcelos V, et al. Genetic diversity and structure of the invasive toxic cyanobacterium Cylindrospermopsis raciborskii[J]. Current Microbiology, 2011, 62(5):1590-1595 Hoff-Risseti C, Dörr F A, Schaker P D C, et al. Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater[J]. PLoS One, 2013, 8(8):e74238 Adriana S L, Mathias A C, Viviane P S, et al. Microcystins and cylindrospermopsins molecular markers for the detection of toxic cyanobacteria:A case study of northeastern Brazilian reservoirs[J]. Limnetica, 2015(34):269-282 Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin:A review on global distribution and ecology of its producers[J]. Water Research, 2014, 66:320-337 Amaral V, Bonilla S, Aubriot L. Growth optimization of the invasive cyanobacterium Cylindrospermopsis raciborskii in response to phosphate fluctuations[J]. European Journal of Phycology, 2014, 49(1):134-141 Dokulil M T. Vegetative survival of Cylindrospermopsis raciborskii (cyanobacteria) at low temperature and low light[J]. Hydrobiologia, 2016, 764(1):241-247 Briand J F, Leboulanger C, Humbert J F, et al. Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes:Selection, wide physiological tolerance, or global warming?[J]. Journal of Phycology, 2004, 40(2):231-238 Griffiths D J, Saker M L. The Palm Island mystery disease 20 years on:A review of research on the cyanotoxin cylindrospermopsin[J]. Environmental Toxicology, 2003, 18(2):78-93 Figueredo C C, Giani A. Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion?[J]. Journal of Phycology, 2007, 43(2):256-265 Bonilla S, Aubriot L, Soares M C S, et al. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii?[J]. FEMS Microbiology Ecology, 2012, 79(3):594-607 Sinha R, Pearson L A, Davis T W, et al. Increased incidence of Cylindrospermopsis raciborskii in temperate zones-Is climate change responsible?[J]. Water Research, 2012, 46(5):1408-1419 Lei L M, Peng L, Huang X H, et al. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China[J]. Environmental Monitoring and Assessment, 2014, 186(5):3079-3090 Xie J L, Yu G L, Xu X D, et al. The morphological and molecular detection for the presence of toxic Cylindrospermopsis (Nostocales, Cyanobacteria) in Beijing City, China[J]. Journal of Oceanology and Limnology, 2018, 36(2):263-272 Jiang Y G, Xiao P, Yu G L, et al. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies[J]. Applied and Environmental Microbiology, 2014, 80(17):5219-5230 路琰, 雷敏婷, 叶金梅, 等. 广东省千灯湖拟柱孢藻(Cylindrospermopsis raciborskii)的形态和产毒能力的株间差异及系统进化[J]. 湖泊科学, 2020, 32(1):144-153 Lu Y, Lei M T, Ye J M, et al. Intraspecific variation of morphological traits and toxin-producing capacity and phylogenetic analysis for Cylindrospermopsis raciborskii from Qiandenghu Lake, Guangdong Province[J]. Journal of Lake Sciences, 2020, 32(1):144-153(in Chinese)
晁爱敏, 于海燕, 肖鹏, 等. 杭州湘湖拉氏拟柱孢藻(Cylindrospermopsis raciborskii)藻株的分离及其特征研究[J]. 河南师范大学学报:自然科学版, 2021, 49(4):106-113 Chao A M, Yu H Y, Xiao P, et al. Isolation and characterization of a Cylindrospermopsis raciborskii strain from Lake Xianghu, Hangzhou[J]. Journal of Henan Normal University:Natural Science Edition, 2021, 49(4):106-113(in Chinese)
Yang J, Yu X Q, Liu L M, et al. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China[J]. Environmental Science and Pollution Research, 2012, 19(5):1432-1442 Yang J R, Lv H, Isabwe A, et al. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs[J]. Water Research, 2017, 120:52-63 Orr P T, Willis A, Burford M A. Application of first order rate kinetics to explain changes in bloom toxicity-The importance of understanding cell toxin quotas[J]. Journal of Oceanology and Limnology, 2018, 36(4):1063-1074 Hongoh Y, Yuzawa H, Ohkuma M, et al. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment[J]. FEMS Microbiology Letters, 2003, 221(2):299-304 Edgar R C. MUSCLE:Multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5):1792-1797 Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. trimAl:A tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15):1972-1973 Nguyen L T, Schmidt H A, von Haeseler A, et al. IQ-TREE:A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2014, 32(1):268-274 Manya W F, Lizárraga W C, Mormontoy C G, et al. Complete genome sequence of Halomonas sp. strain SH5A2, a dye-degrading halotolerant bacterium isolated from the Salinas and Aguada Blanca national reserve in Peru[J]. Microbiology Resource Announcements, 2021, 10(2):e01083-e01020 Kumar S, Stecher G, Li M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549 Bolger A M, Lohse M, Usadel B. Trimmomatic:A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120 Luo R B, Liu B H, Xie Y L, et al. SOAPdenovo2:An empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1):2047-217X Kellmann R, Mills T, Neilan B A. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes[J]. Journal of Molecular Evolution, 2006, 62(3):267-280 Stucken K, John U, Cembella A, et al. The smallest known genomes of multicellular and toxic cyanobacteria:Comparison, minimal gene sets for linked traits and the evolutionary implications[J]. PLoS One, 2010, 5(2):e9235 Cohan F M, Koeppel A F. The origins of ecological diversity in prokaryotes[J]. Current Biology, 2008, 18(21):R1024-R1034 Padisák J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium:Worldwide distribution and review of its ecology[J]. Archiv Für Hydrobiologie Supplementband, 1997, 107:563-593 Tawong W, Pongcharoen P, Nishimura T, et al. Molecular characterizations of Thai Raphidiopsis raciborskii (Nostocales, Cyanobacteria) based on 16S rDNA, rbcLX, and cylindrospermopsin synthetase genes[J]. Plankton and Benthos Research, 2019, 14(4):211-223 Shafik H M. Morphological characteristics of Cylindrospermopsis raciborskii (wołoszyńska) seenayya et subba raju in laboratory cultures[J]. Acta Biologica Hungarica, 2003, 54(1):121-136 Neilan B A, Saker M L, Fastner J, et al. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii[J]. Molecular Ecology, 2003, 12(1):133-140 Atkinson K M. Birds as transporters of algae[J]. British Phycological Journal, 1972, 7(3):319-321 Mundkur T, Galbraith C, Jones T, et al. A review of migratory bird flyways and priorities for management[R]. Bonn:UNEP/CMS Secretariat, 2014 Atkinson K M. Experiments in dispersal of phytoplankton by ducks[J]. British Phycological Journal, 1980, 15(1):49-58 Mazmouz R, Chapuis-Hugon F, Mann S, et al. Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506:Identification of the cyr gene cluster and toxin analysis[J]. Applied and Environmental Microbiology, 2010, 76(15):4943-4949 Jiang Y G, Xiao P, Yu G L, et al. Molecular basis and phylogenetic implications of deoxycylindrospermopsin biosynthesis in the cyanobacterium Raphidiopsis curvata[J]. Applied and Environmental Microbiology, 2012, 78(7):2256-2263 -

计量
- 文章访问数: 3710
- HTML全文浏览数: 3710
- PDF下载数: 144
- 施引文献: 0