福建石兜水库产毒拉氏尖头藻(Raphidiopsis raciborskii)遗传多样性

谭凤娇, 肖鹏, 左俊, 金磊, 程晨, 雷腊梅, 谢丽强, 杨军. 福建石兜水库产毒拉氏尖头藻(Raphidiopsis raciborskii)遗传多样性[J]. 生态毒理学报, 2022, 17(3): 56-67. doi: 10.7524/AJE.1673-5897.20211012004
引用本文: 谭凤娇, 肖鹏, 左俊, 金磊, 程晨, 雷腊梅, 谢丽强, 杨军. 福建石兜水库产毒拉氏尖头藻(Raphidiopsis raciborskii)遗传多样性[J]. 生态毒理学报, 2022, 17(3): 56-67. doi: 10.7524/AJE.1673-5897.20211012004
Tan Fengjiao, Xiao Peng, Zuo Jun, Jin Lei, Cheng Chen, Lei Lamei, Xie Liqiang, Yang Jun. Genetic Diversity of Toxin-Producing Raphidiopsis raciborskii (Cyanobacterium) Isolated from Shidou Reservoir in Fujian Province[J]. Asian journal of ecotoxicology, 2022, 17(3): 56-67. doi: 10.7524/AJE.1673-5897.20211012004
Citation: Tan Fengjiao, Xiao Peng, Zuo Jun, Jin Lei, Cheng Chen, Lei Lamei, Xie Liqiang, Yang Jun. Genetic Diversity of Toxin-Producing Raphidiopsis raciborskii (Cyanobacterium) Isolated from Shidou Reservoir in Fujian Province[J]. Asian journal of ecotoxicology, 2022, 17(3): 56-67. doi: 10.7524/AJE.1673-5897.20211012004

福建石兜水库产毒拉氏尖头藻(Raphidiopsis raciborskii)遗传多样性

    作者简介: 谭凤娇(1991—),女,博士研究生,研究方向为环境科学、有害蓝藻监测,E-mail:fjtan@iue.ac.cn
    通讯作者: 杨军, E-mail: jyang@iue.ac.cn
  • 基金项目:

    国家自然科学基金资助项目(91851104);福建省自然科学基金资助项目(2019J02016,2020J01119);福建省环保科技计划项目(2021R009)

  • 中图分类号: X171.5

Genetic Diversity of Toxin-Producing Raphidiopsis raciborskii (Cyanobacterium) Isolated from Shidou Reservoir in Fujian Province

    Corresponding author: Yang Jun, jyang@iue.ac.cn
  • Fund Project:
  • 摘要: 近几十年以来,全球内陆深水水体拉氏尖头藻(Raphidiopsis raciborskii)的检出率和水华事件日益增多,这种新型水华蓝藻具有产毒和无毒株系,其中能合成拟柱胞藻毒素(cylindrospermopsins,CYNs)的株系主要分布在澳大利亚和东南亚,严重威胁水生态系统和人类健康。本研究于2018年从福建省厦门市石兜水库分离、培养了4株拉氏尖头藻(XM1~XM4),对其形态、遗传多样性和产毒特征进行了研究。显微观察结果表明,4株拉氏尖头藻形态特征基本一致,细胞平均长度为3.79~4.26 μm,藻丝体呈直线型、平均长度为122~199 μm,在环境样品中可观察到异形胞(固氮细胞),使用富含氮的BG11培养基培养后异形胞会消失。酶联免疫吸附(ELISA)试剂盒测定显示,4株拉氏尖头藻均为产毒藻株;液相色谱串联质谱(LC-MS/MS)分析表明,4个藻株能同时合成CYN和脱氧拟柱胞藻毒素(deoxy-CYN),其中XM1、XM2和XM3藻株以CYN为主,在对数生长后期平均浓度为0.71~1.02 pg·cell-1,XM4则以deoxy-CYN为主,平均浓度为0.42 pg·cell-1。16S rRNA基因系统发育分析表明,XM2藻株与非洲藻株同源相似性较高,其他3株(XM1、XM3和XM4)与亚洲、欧洲的藻株同源相似性较高,表明石兜水库拉氏尖头藻种群遗传多样性较高。序列分析发现,XM2藻株具有完整的产CYN基因簇,但是部分关键基因发生了重排变异,cyrBcyrI基因分别被分割成2部分和3部分,XM2藻株与浙江杭州藻株产毒基因簇最为相似。在气候变化和人类活动多重影响下,我国水源地水库产毒拉氏尖头藻的来源、传播扩散、遗传分化和生态效应有待进一步研究。
  • 加载中
  • Paerl H W, Otten T G. Environmental science. Blooms bite the hand that feeds them[J]. Science, 2013, 342(6157):433-434
    Antunes J T, Leão P N, Vasconcelos V M. Cylindrospermopsis raciborskii:Review of the distribution, phylogeography, and ecophysiology of a global invasive species[J]. Frontiers in Microbiology, 2015, 6:473
    Panou M, Zervou S K, Kaloudis T, et al. A Greek Cylindrospermopsis raciborskii strain:Missing link in tropic invader's phylogeography tale[J]. Harmful Algae, 2018, 80:96-106
    Aguilera A, Gómez E B, Kaštovský J, et al. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria)[J]. Phycologia, 2018, 57(2):130-146
    Komarek J, Kastovsky J, Mares J, et al. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach[J]. Preslia, 2014, 86(4):295-335
    Mihali T K, Kellmann R, Muenchhoff J, et al. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis[J]. Applied and Environmental Microbiology, 2008, 74(3):716-722
    Yang Y M, Yu G L, Chen Y X, et al. Four decades of progress in cylindrospermopsin research:The ins and outs of a potent cyanotoxin[J]. Journal of Hazardous Materials, 2021, 406:124653
    Saker M L, Neilan B A, Griffiths D J. Two morphological forms of Cylindrospermopsis raciborskii (cyanobacteria) isolated from Solomon Dam, Palm Island, Queensland[J]. Journal of Phycology, 1999, 35(3):599-606
    Burford M A, Davis T W, Orr P T, et al. Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii[J]. FEMS Microbiology Ecology, 2014, 89(1):135-148
    Willis A, Chuang A W, Woodhouse J N, et al. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii[J]. Toxicon, 2016, 119:307-310
    Gugger M, Molica R, Le Berre B, et al. Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents[J]. Applied and Environmental Microbiology, 2005, 71(2):1097-1100
    Piccini C, Aubriot L, Fabre A, et al. Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes[J]. Harmful Algae, 2011, 10(6):644-653
    Saker M L, Neilan B A. Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from Northern Australia[J]. Applied and Environmental Microbiology, 2001, 67(4):1839-1845
    Moreira C, Fathalli A, Vasconcelos V, et al. Genetic diversity and structure of the invasive toxic cyanobacterium Cylindrospermopsis raciborskii[J]. Current Microbiology, 2011, 62(5):1590-1595
    Hoff-Risseti C, Dörr F A, Schaker P D C, et al. Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater[J]. PLoS One, 2013, 8(8):e74238
    Adriana S L, Mathias A C, Viviane P S, et al. Microcystins and cylindrospermopsins molecular markers for the detection of toxic cyanobacteria:A case study of northeastern Brazilian reservoirs[J]. Limnetica, 2015(34):269-282
    Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin:A review on global distribution and ecology of its producers[J]. Water Research, 2014, 66:320-337
    Amaral V, Bonilla S, Aubriot L. Growth optimization of the invasive cyanobacterium Cylindrospermopsis raciborskii in response to phosphate fluctuations[J]. European Journal of Phycology, 2014, 49(1):134-141
    Dokulil M T. Vegetative survival of Cylindrospermopsis raciborskii (cyanobacteria) at low temperature and low light[J]. Hydrobiologia, 2016, 764(1):241-247
    Briand J F, Leboulanger C, Humbert J F, et al. Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes:Selection, wide physiological tolerance, or global warming?[J]. Journal of Phycology, 2004, 40(2):231-238
    Griffiths D J, Saker M L. The Palm Island mystery disease 20 years on:A review of research on the cyanotoxin cylindrospermopsin[J]. Environmental Toxicology, 2003, 18(2):78-93
    Figueredo C C, Giani A. Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion?[J]. Journal of Phycology, 2007, 43(2):256-265
    Bonilla S, Aubriot L, Soares M C S, et al. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii?[J]. FEMS Microbiology Ecology, 2012, 79(3):594-607
    Sinha R, Pearson L A, Davis T W, et al. Increased incidence of Cylindrospermopsis raciborskii in temperate zones-Is climate change responsible?[J]. Water Research, 2012, 46(5):1408-1419
    Lei L M, Peng L, Huang X H, et al. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China[J]. Environmental Monitoring and Assessment, 2014, 186(5):3079-3090
    Xie J L, Yu G L, Xu X D, et al. The morphological and molecular detection for the presence of toxic Cylindrospermopsis (Nostocales, Cyanobacteria) in Beijing City, China[J]. Journal of Oceanology and Limnology, 2018, 36(2):263-272
    Jiang Y G, Xiao P, Yu G L, et al. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies[J]. Applied and Environmental Microbiology, 2014, 80(17):5219-5230
    路琰, 雷敏婷, 叶金梅, 等. 广东省千灯湖拟柱孢藻(Cylindrospermopsis raciborskii)的形态和产毒能力的株间差异及系统进化[J]. 湖泊科学, 2020, 32(1):144-153

    Lu Y, Lei M T, Ye J M, et al. Intraspecific variation of morphological traits and toxin-producing capacity and phylogenetic analysis for Cylindrospermopsis raciborskii from Qiandenghu Lake, Guangdong Province[J]. Journal of Lake Sciences, 2020, 32(1):144-153(in Chinese)

    晁爱敏, 于海燕, 肖鹏, 等. 杭州湘湖拉氏拟柱孢藻(Cylindrospermopsis raciborskii)藻株的分离及其特征研究[J]. 河南师范大学学报:自然科学版, 2021, 49(4):106-113

    Chao A M, Yu H Y, Xiao P, et al. Isolation and characterization of a Cylindrospermopsis raciborskii strain from Lake Xianghu, Hangzhou[J]. Journal of Henan Normal University:Natural Science Edition, 2021, 49(4):106-113(in Chinese)

    Yang J, Yu X Q, Liu L M, et al. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China[J]. Environmental Science and Pollution Research, 2012, 19(5):1432-1442
    Yang J R, Lv H, Isabwe A, et al. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs[J]. Water Research, 2017, 120:52-63
    Orr P T, Willis A, Burford M A. Application of first order rate kinetics to explain changes in bloom toxicity-The importance of understanding cell toxin quotas[J]. Journal of Oceanology and Limnology, 2018, 36(4):1063-1074
    Hongoh Y, Yuzawa H, Ohkuma M, et al. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment[J]. FEMS Microbiology Letters, 2003, 221(2):299-304
    Edgar R C. MUSCLE:Multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5):1792-1797
    Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. trimAl:A tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15):1972-1973
    Nguyen L T, Schmidt H A, von Haeseler A, et al. IQ-TREE:A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2014, 32(1):268-274
    Manya W F, Lizárraga W C, Mormontoy C G, et al. Complete genome sequence of Halomonas sp. strain SH5A2, a dye-degrading halotolerant bacterium isolated from the Salinas and Aguada Blanca national reserve in Peru[J]. Microbiology Resource Announcements, 2021, 10(2):e01083-e01020
    Kumar S, Stecher G, Li M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549
    Bolger A M, Lohse M, Usadel B. Trimmomatic:A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120
    Luo R B, Liu B H, Xie Y L, et al. SOAPdenovo2:An empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1):2047-217X
    Kellmann R, Mills T, Neilan B A. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes[J]. Journal of Molecular Evolution, 2006, 62(3):267-280
    Stucken K, John U, Cembella A, et al. The smallest known genomes of multicellular and toxic cyanobacteria:Comparison, minimal gene sets for linked traits and the evolutionary implications[J]. PLoS One, 2010, 5(2):e9235
    Cohan F M, Koeppel A F. The origins of ecological diversity in prokaryotes[J]. Current Biology, 2008, 18(21):R1024-R1034
    Padisák J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium:Worldwide distribution and review of its ecology[J]. Archiv Für Hydrobiologie Supplementband, 1997, 107:563-593
    Tawong W, Pongcharoen P, Nishimura T, et al. Molecular characterizations of Thai Raphidiopsis raciborskii (Nostocales, Cyanobacteria) based on 16S rDNA, rbcLX, and cylindrospermopsin synthetase genes[J]. Plankton and Benthos Research, 2019, 14(4):211-223
    Shafik H M. Morphological characteristics of Cylindrospermopsis raciborskii (wołoszyńska) seenayya et subba raju in laboratory cultures[J]. Acta Biologica Hungarica, 2003, 54(1):121-136
    Neilan B A, Saker M L, Fastner J, et al. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii[J]. Molecular Ecology, 2003, 12(1):133-140
    Atkinson K M. Birds as transporters of algae[J]. British Phycological Journal, 1972, 7(3):319-321
    Mundkur T, Galbraith C, Jones T, et al. A review of migratory bird flyways and priorities for management[R]. Bonn:UNEP/CMS Secretariat, 2014
    Atkinson K M. Experiments in dispersal of phytoplankton by ducks[J]. British Phycological Journal, 1980, 15(1):49-58
    Mazmouz R, Chapuis-Hugon F, Mann S, et al. Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506:Identification of the cyr gene cluster and toxin analysis[J]. Applied and Environmental Microbiology, 2010, 76(15):4943-4949
    Jiang Y G, Xiao P, Yu G L, et al. Molecular basis and phylogenetic implications of deoxycylindrospermopsin biosynthesis in the cyanobacterium Raphidiopsis curvata[J]. Applied and Environmental Microbiology, 2012, 78(7):2256-2263
  • 加载中
计量
  • 文章访问数:  3710
  • HTML全文浏览数:  3710
  • PDF下载数:  144
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-12
谭凤娇, 肖鹏, 左俊, 金磊, 程晨, 雷腊梅, 谢丽强, 杨军. 福建石兜水库产毒拉氏尖头藻(Raphidiopsis raciborskii)遗传多样性[J]. 生态毒理学报, 2022, 17(3): 56-67. doi: 10.7524/AJE.1673-5897.20211012004
引用本文: 谭凤娇, 肖鹏, 左俊, 金磊, 程晨, 雷腊梅, 谢丽强, 杨军. 福建石兜水库产毒拉氏尖头藻(Raphidiopsis raciborskii)遗传多样性[J]. 生态毒理学报, 2022, 17(3): 56-67. doi: 10.7524/AJE.1673-5897.20211012004
Tan Fengjiao, Xiao Peng, Zuo Jun, Jin Lei, Cheng Chen, Lei Lamei, Xie Liqiang, Yang Jun. Genetic Diversity of Toxin-Producing Raphidiopsis raciborskii (Cyanobacterium) Isolated from Shidou Reservoir in Fujian Province[J]. Asian journal of ecotoxicology, 2022, 17(3): 56-67. doi: 10.7524/AJE.1673-5897.20211012004
Citation: Tan Fengjiao, Xiao Peng, Zuo Jun, Jin Lei, Cheng Chen, Lei Lamei, Xie Liqiang, Yang Jun. Genetic Diversity of Toxin-Producing Raphidiopsis raciborskii (Cyanobacterium) Isolated from Shidou Reservoir in Fujian Province[J]. Asian journal of ecotoxicology, 2022, 17(3): 56-67. doi: 10.7524/AJE.1673-5897.20211012004

福建石兜水库产毒拉氏尖头藻(Raphidiopsis raciborskii)遗传多样性

    通讯作者: 杨军, E-mail: jyang@iue.ac.cn
    作者简介: 谭凤娇(1991—),女,博士研究生,研究方向为环境科学、有害蓝藻监测,E-mail:fjtan@iue.ac.cn
  • 1. 中国科学院城市环境研究所, 福建省流域生态学重点实验室, 城市环境与健康重点实验室, 水生态健康研究组, 厦门 361021;
  • 2. 中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室, 南京 210008;
  • 3. 中国科学院大学, 北京 100049;
  • 4. 暨南大学生命科学技术学院生态学系, 广州 510632
基金项目:

国家自然科学基金资助项目(91851104);福建省自然科学基金资助项目(2019J02016,2020J01119);福建省环保科技计划项目(2021R009)

摘要: 近几十年以来,全球内陆深水水体拉氏尖头藻(Raphidiopsis raciborskii)的检出率和水华事件日益增多,这种新型水华蓝藻具有产毒和无毒株系,其中能合成拟柱胞藻毒素(cylindrospermopsins,CYNs)的株系主要分布在澳大利亚和东南亚,严重威胁水生态系统和人类健康。本研究于2018年从福建省厦门市石兜水库分离、培养了4株拉氏尖头藻(XM1~XM4),对其形态、遗传多样性和产毒特征进行了研究。显微观察结果表明,4株拉氏尖头藻形态特征基本一致,细胞平均长度为3.79~4.26 μm,藻丝体呈直线型、平均长度为122~199 μm,在环境样品中可观察到异形胞(固氮细胞),使用富含氮的BG11培养基培养后异形胞会消失。酶联免疫吸附(ELISA)试剂盒测定显示,4株拉氏尖头藻均为产毒藻株;液相色谱串联质谱(LC-MS/MS)分析表明,4个藻株能同时合成CYN和脱氧拟柱胞藻毒素(deoxy-CYN),其中XM1、XM2和XM3藻株以CYN为主,在对数生长后期平均浓度为0.71~1.02 pg·cell-1,XM4则以deoxy-CYN为主,平均浓度为0.42 pg·cell-1。16S rRNA基因系统发育分析表明,XM2藻株与非洲藻株同源相似性较高,其他3株(XM1、XM3和XM4)与亚洲、欧洲的藻株同源相似性较高,表明石兜水库拉氏尖头藻种群遗传多样性较高。序列分析发现,XM2藻株具有完整的产CYN基因簇,但是部分关键基因发生了重排变异,cyrBcyrI基因分别被分割成2部分和3部分,XM2藻株与浙江杭州藻株产毒基因簇最为相似。在气候变化和人类活动多重影响下,我国水源地水库产毒拉氏尖头藻的来源、传播扩散、遗传分化和生态效应有待进一步研究。

English Abstract

参考文献 (52)

返回顶部

目录

/

返回文章
返回