吐纳麝香(6-乙酰基-1,1,2,4,4,7-六甲基四氢萘)对人永生化角质形成细胞HaCaT间隙连接通讯的影响
Effects of 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN) on Gap Junctional Intercellular Communication in Human Immortalized Keratinocytes Cells HaCaT
-
摘要: 吐纳麝香(tonalide,AHTN)广泛存在于各种生物和环境介质,易生物富集,具有内分泌干扰效应,皮肤接触是其进入人体的主要途径。细胞间隙连接通讯(gap junction intercellular communication,GJIC)是普遍存在于相邻细胞间的直接通讯通道,其功能的抑制与癌症的发生发展密切相关。目前AHTN对人体皮肤细胞GJIC的影响尚未见报道。本研究选用人永生化角质形成细胞HaCaT为体外(in vitro)暴露实验的材料,MTT法检测环境相关浓度AHTN对HaCaT细胞活性的影响,细胞划痕标记染料示踪技术(scrape-loading and dye transfer,SLDT)检测AHTN对GJIC功能的影响,通过对GJIC生物标志物及MAPK/ERK和PI3K/AKT信号通路的定量分析,探究AHTN调控HaCaT细胞GJIC功能的分子机制。细胞活性检测发现,10-8 mol·L-1的AHTN暴露24 h和10-9 mol·L-1的AHTN暴露48 h均可显著促进HaCaT细胞增殖(P≤0.01);10-6 mol·L-1的AHTN暴露48 h可显著抑制HaCaT细胞增殖(P≤0.01)。SLDT检测发现,10-8 mol·L-1的AHTN暴露24 h,GJIC功能增强;10-8 mol·L-1和10-9 mol·L-1的AHTN暴露48 h,GJIC功能减弱。对不同暴露浓度和时间下雌激素受体α(estrogen receptor,ERα)的定量分析及抑制实验证明,AHTN可通过上调ERα的表达,促进或抑制下游Cx26和Cx43的表达,进而影响HaCaT细胞的GJIC功能。对信号通路的定量分析发现,10-8 mol·L-1和10-9 mol·L-1的AHTN暴露可上调级联分子MEK、ERK、PI3K和AKT的磷酸化水平,激活MAPK/ERK和PI3K/AKT信号通路,进而上调Cx43磷酸化水平,抑制GJIC功能。本研究首次通过体外实验证明了环境相关浓度AHTN对人体皮肤细胞GJIC的影响及可能的分子机制,为客观评价AHTN的生物毒性和致癌风险提供了科学依据。
-
关键词:
- 吐纳麝香 /
- 细胞间隙连接通讯 /
- 雌激素受体 /
- MAPK/ERK通路 /
- PI3K/AKT通路
Abstract: 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN), a widely used synthetic musk, exists in various biota and environmental media. It is easy to be accumulated in organisms and has been proven to have endocrine disrupting effects. The main way of AHTN entering human body is skin exposure. Gap junction intercellular communication (GJIC) is a common means of communication between adjacent cells and the inhibition of GJIC function is closely related to the occurrence and development of cancer. However, there is almost no effect study of AHTN on GJIC function in skin cells till now. In this study, human immortalized keratinocytes cell line (HaCaT) was exposed to different environmental relevant concentrations of AHTN in vitro, to explore the effects of AHTN on cell viability and GJIC function in skin cells. The MTT method was used to detect cell proliferation, while the scrape-loading and dye transfer (SLDT) method was used to demonstrate GJIC function. Biomarkers related to GJIC and its regulation pathways (MAPK/ERK and PI3K/AKT) were quantitative analyzed by RT-qPCR and Western blot, to reveal the possible molecular mechanism of AHTN on GJIC function in HaCaT cells. MTT assay showed that low concentration of AHTN exposure (10-8 mol·L-1 for 24 h and 10-9 mol·L-1 for 48 h) significantly promoted HaCaT cell proliferation, while high concentration of AHTN exposure (10-6 mol·L-1 for 48 h) significantly inhibited HaCaT cell proliferation. SLDT test demonstrated that GJIC function was increased after 24 h exposure to 10-8 mol·L-1 AHTN, but decreased after 48 h exposure to 10-8 mol·L-1 and 10-9 mol·L-1 AHTN. Quantitative analysis of estrogen receptor α (ERα) and connexins proved that different concentrations of AHTN exposure could up-regulate the expression of ERα, promote or inhibit the expression of downstream Cx26 and Cx43, and thereby affect the GJIC function in HaCaT cells. The ERα inhibitor experiments further identified the important role of ERα in AHTN-induced GJIC function alteration. Quantitative analysis of related signaling pathways proved that exposure to 10-8 mol·L-1 and 10-9 mol·L-1 AHTN could activate MAPK/ERK and PI3K/AKT signaling pathways by up-regulating the phosphorylation levels of cascade molecules MEK, ERK, PI3K and AKT, and inhibit GJIC function by up-regulating the phosphorylation level of Cx43. Taken together, the influence and possible molecular mechanisms of environmental relevant concentrations of AHTN on GJIC function in human skin cells was first explored in this study. Our results will provide scientific bases for objectively evaluating on the biological toxicity and carcinogenic risk of AHTN. -
-
Kallenborn R, Gatermann R, Rimkus G G. Synthetic musks in environmental samples:Indicator compounds with relevant properties for environmental monitoring[J]. Journal of Environmental Monitoring, 1999, 1(4):70N-74N Peck A M, Hornbuckle K C. Synthetic musk fragrances in urban and rural air of Iowa and the Great Lakes[J]. Atmospheric Environment, 2006, 40(32):6101-6111 Sofuoglu A, Kiymet N, Kavcar P, et al. Polycyclic and nitro musks in indoor air:A primary school classroom and a women's sport center[J]. Indoor Air, 2010, 20(6):515-522 Zhou H D, Huang X, Gao M J, et al. Distribution and elimination of polycyclic musks in three sewage treatment plants of Beijing, China[J]. Journal of Environmental Sciences (China), 2009, 21(5):561-567 Zhang X L, Yao Y, Zeng X Y, et al. Synthetic musks in the aquatic environment and personal care products in Shanghai, China[J]. Chemosphere, 2008, 72(10):1553-1558 Hu Z J, Shi Y L, Cai Y Q. Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China[J]. Chemosphere, 2011, 84(11):1630-1635 高艳蓬, 李桂英, 马盛韬, 等. 合成麝香的研究新进展与当前挑战:从人体护理、环境污染到人体健康[J]. 化学进展, 2017, 29(9):1082-1092 Gao Y P, Li G Y, Ma S T, et al. Research progress and challenge of synthetic musks:From personal care, environment pollution to human health[J]. Progress in Chemistry, 2017, 29(9):1082-1092(in Chinese)
Zeng X Y, Sheng G Y, Xiong Y, et al. Determination of polycyclic musks in sewage sludge from Guangdong, China using GC-EI-MS[J]. Chemosphere, 2005, 60(6):817-823 Zeng X Y, Mai B X, Sheng G Y, et al. Distribution of polycyclic musks in surface sediments from the Pearl River Delta and Macao Coastal Region, South China[J]. Environmental Toxicology and Chemistry, 2008, 27(1):18-23 Osemwengie L I, Gerstenberger S L. Levels of synthetic musk compounds in municipal wastewater for potential estimation of biota exposure in receiving waters[J]. Journal of Environmental Monitoring, 2004, 6(6):533-539 Saraiva M, Cavalheiro J, Lanceleur L, et al. Synthetic musk in seafood products from south Europe using a quick, easy, cheap, effective, rugged and safe extraction method[J]. Food Chemistry, 2016, 200:330-335 Shek W M, Murphy M B, Lam J C, et al. Polycyclic musks in green-lipped mussels (Perna viridis) from Hong Kong[J]. Marine Pollution Bulletin, 2008, 57(6-12):373-380 Vallecillos L, Pocurull E, Borrull F. Influence of pre-treatment process on matrix effect for the determination of musk fragrances in fish and mussel[J]. Talanta, 2015, 134:690-698 Ziarrusta H, Olivares M, Delgado A, et al. Multiscreening determination of organic pollutants in molluscs using matrix solid phase dispersion[J]. Journal of Chromatography A, 2015, 1391:18-30 Rimkus G G, Wolf M. Polycyclic musk fragrances in human adipose tissue and human milk[J]. Chemosphere, 1996, 33(10):2033-2043 Yin J, Wang H, Zhang J, et al. The occurrence of synthetic musks in human breast milk in Sichuan, China[J]. Chemosphere, 2012, 87(9):1018-1023 Müller S, Schmid P, Schlatter C. Occurrence of nitro and non-nitro benzenoid musk compounds in human adipose tissue[J]. Chemosphere, 1996, 33(1):17-28 Kannan K, Reiner J L, Yun S H, et al. Polycyclic musk compounds in higher trophic level aquatic organisms and humans from the United States[J]. Chemosphere, 2005, 61(5):693-700 Moon H B, Lee D H, Lee Y S, et al. Occurrence and accumulation patterns of polycyclic aromatic hydrocarbons and synthetic musk compounds in adipose tissues of Korean females[J]. Chemosphere, 2012, 86(5):485-490 Hutter H P, Wallner P, Moshammer H, et al. Blood concentrations of polycyclic musks in healthy young adults[J]. Chemosphere, 2005, 59(4):487-492 Hu Z J, Shi Y L, Niu H Y, et al. Occurrence of synthetic musk fragrances in human blood from 11 cities in China[J]. Environmental Toxicology and Chemistry, 2010, 29(9):1877-1882 Wollenberger L, Breitholtz M, Ole Kusk K, et al. Inhibition of larval development of the marine copepod Acartia tonsa by four synthetic musk substances[J]. The Science of the Total Environment, 2003, 305(1-3):53-64 Api A M, Ford R A. Evaluation of the oral subchronic toxicity of HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran) in the rat[J]. Toxicology Letters, 1999, 111(1-2):143-149 Randelli E, Rossini V, Corsi I, et al. Effects of the polycyclic ketone tonalide (AHTN) on some cell viability parameters and transcription of P450 and immunoregulatory genes in rainbow trout RTG-2 cells[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2011, 25(8):1596-1602 Parolini M, Magni S, Traversi I, et al. Environmentally relevant concentrations of galaxolide (HHCB) and tonalide (AHTN) induced oxidative and genetic damage in Dreissena polymorpha[J]. Journal of Hazardous Materials, 2015, 285:1-10 Ayuk-Takem L, Amissah F, Aguilar B J, et al. Inhibition of polyisoprenylated methylated protein methyl esterase by synthetic musks induces cell degeneration[J]. Environmental Toxicology, 2014, 29(4):466-477 Bitsch N, Dudas C, Körner W, et al. Estrogenic activity of musk fragrances detected by the E-screen assay using human MCF-7 cells[J]. Archives of Environmental Contamination and Toxicology, 2002, 43(3):257-264 van der Burg B, Schreurs R, van der Linden S, et al. Endocrine effects of polycyclic musks:Do we smell a rat?[J]. International Journal of Andrology, 2008, 31(2):188-193 Schreurs R H, Quaedackers M E, Seinen W, et al. Transcriptional activation of estrogen receptor ERalpha and ERbeta by polycyclic musks is cell type dependent[J]. Toxicology and Applied Pharmacology, 2002, 183(1):1-9 Li Z N, Yin N Y, Liu Q, et al. Effects of polycyclic musks HHCB and AHTN on steroidogenesis in H295R cells[J]. Chemosphere, 2013, 90(3):1227-1235 Schreurs R H, Legler J, Artola-Garicano E, et al. In vitro and in vivo antiestrogenic effects of polycyclic musks in zebrafish[J]. Environmental Science & Technology, 2004, 38(4):997-1002 Schreurs R H, Sonneveld E, Jansen J H, et al. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2005, 83(2):264-272 Cadby P A, Troy W R, Vey M G H. Consumer exposure to fragrance ingredients:Providing estimates for safety evaluation[J]. Regulatory Toxicology and Pharmacology, 2002, 36(3):246-252 Tseng W J, Tsai S W. Assessment of dermal exposures for synthetic musks from personal care products in Taiwan[J]. Science of the Total Environment, 2019, 669:160-167 Research Institute for Fragrance Materials, Inc. (RIFM). 1975. Acute toxicity studies on rats and rabbits[R]. Woodcliff:RIFM, 2020 Richard G. Connexins:A connection with the skin[J]. Experimental Dermatology, 2000, 9(2):77-96 Ren J, Wang X H, Wang G C, et al. 17β estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells[J]. Bone, 2013, 53(2):587-596 Chung T H, Wang S M, Liang J Y, et al. The interaction of estrogen receptor alpha and caveolin-3 regulates connexin43 phosphorylation in metabolic inhibition-treated rat cardiomyocytes[J]. The International Journal of Biochemistry & Cell Biology, 2009, 41(11):2323-2333 Vandenberg L N, Colborn T, Hayes T B, et al. Hormones and endocrine-disrupting chemicals:Low-dose effects and nonmonotonic dose responses[J]. Endocrine Reviews, 2012, 33(3):378-455 Boukamp P, Petrussevska R T, Breitkreutz D, et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line[J]. The Journal of Cell Biology, 1988, 106(3):761-771 王娟, 郭瑞珍. 皮肤瘢痕癌与细胞间隙连接通讯的研究现状[J]. 医学综述, 2008, 14(11):1617-1619 Wang J, Guo R Z. Current study of skin scar carcinoma and GJIC[J]. Medical Recapitulate, 2008, 14(11):1617-1619(in Chinese)
Zhang Q, Wu S, Liu L, et al. Effects of bisphenol A on gap junctions in HaCaT cells as mediated by the estrogen receptor pathway[J]. Journal of Applied Toxicology, 2019, 39(2):271-281 陈世玖, 郭瑞珍, 李纳. 皮肤瘢痕上皮及瘢痕癌癌巢中Cx26 Cx26 mRNA的表达及意义[J]. 中国现代医学杂志, 2012, 22(5):6-9 Chen S J, Guo R Z, Li N. Expressions and significance of Cx26 and Cx26 mRNA in skin scar epithelium and cancer nestes of skin scar carcinoma[J]. China Journal of Modern Medicine, 2012, 22(5):6-9(in Chinese)
Orellana V P, Tittarelli A, Retamal M A. Connexins in melanoma:Potential role of Cx46 in its aggressiveness[J]. Pigment Cell & Melanoma Research, 2021, 34(5):853-868 Fang H S, Gao Y P, Wang H H, et al. Photo-induced oxidative damage to dissolved free amino acids by the photosensitizer polycyclic musk tonalide:Transformation kinetics and mechanisms[J]. Water Research, 2017, 115:339-346 Rivedal E, Opsahl H. Role of PKC and MAP kinase in EGF- and TPA-induced connexin43 phosphorylation and inhibition of gap junction intercellular communication in rat liver epithelial cells[J]. Carcinogenesis, 2001, 22(9):1543-1550 Klotz L O, Patak P, Ale-Agha N, et al. 2-methyl-1,4-naphthoquinone, vitamin K(3), decreases gap-junctional intercellular communication via activation of the epidermal growth factor receptor/extracellular signal-regulated kinase cascade[J]. Cancer Research, 2002, 62(17):4922-4928 Lee H J, Lee H J, Sohn E J, et al. Inhibition of connexin 26/43 and extracellular-regulated kinase protein plays a critical role in melatonin facilitated gap junctional intercellular communication in hydrogen peroxide-treated HaCaT keratinocyte cells[J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012:589365 -

计量
- 文章访问数: 1848
- HTML全文浏览数: 1848
- PDF下载数: 108
- 施引文献: 0