保鲜膜中微塑料和邻苯二甲酸酯浸出行为及斑马鱼胚胎毒性评价

高宇, 许霞, 施昕澜, 张玲, 郭俊, 张秋亚, 彭明国, 薛银刚. 保鲜膜中微塑料和邻苯二甲酸酯浸出行为及斑马鱼胚胎毒性评价[J]. 生态毒理学报, 2022, 17(3): 44-55. doi: 10.7524/AJE.1673-5897.20211012003
引用本文: 高宇, 许霞, 施昕澜, 张玲, 郭俊, 张秋亚, 彭明国, 薛银刚. 保鲜膜中微塑料和邻苯二甲酸酯浸出行为及斑马鱼胚胎毒性评价[J]. 生态毒理学报, 2022, 17(3): 44-55. doi: 10.7524/AJE.1673-5897.20211012003
Gao Yu, Xu Xia, Shi Xinlan, Zhang Ling, Guo Jun, Zhang Qiuya, Peng Mingguo, Xue Yingang. Leaching Behavior and Evaluation of Zebrafish Embryo Toxicity of Microplastics and Phthalates in Plastic Wrap[J]. Asian journal of ecotoxicology, 2022, 17(3): 44-55. doi: 10.7524/AJE.1673-5897.20211012003
Citation: Gao Yu, Xu Xia, Shi Xinlan, Zhang Ling, Guo Jun, Zhang Qiuya, Peng Mingguo, Xue Yingang. Leaching Behavior and Evaluation of Zebrafish Embryo Toxicity of Microplastics and Phthalates in Plastic Wrap[J]. Asian journal of ecotoxicology, 2022, 17(3): 44-55. doi: 10.7524/AJE.1673-5897.20211012003

保鲜膜中微塑料和邻苯二甲酸酯浸出行为及斑马鱼胚胎毒性评价

    作者简介: 高宇(1997—),男,硕士研究生,研究方向为生态毒理学,E-mail:763751356@qq.com
    通讯作者: 许霞, E-mail: xuxia@cczu.edu.cn 薛银刚, E-mail: yzxyg@126.com
  • 基金项目:

    国家自然科学基金资助项目(21607017);水体污染控制与治理科技重大专项(2017ZX07202-01);国家环境保护标准项目(2015-9)

  • 中图分类号: X171.5

Leaching Behavior and Evaluation of Zebrafish Embryo Toxicity of Microplastics and Phthalates in Plastic Wrap

    Corresponding authors: Xu Xia, xuxia@cczu.edu.cn ;  Xue Yingang, yzxyg@126.com
  • Fund Project:
  • 摘要: 保鲜膜是最常见的一类塑料食品接触材料,在生活中被广泛使用,但对于其在不同食品应用场景中有害物质的浸出情况及对生物可能构成的健康风险尚不明确。选取聚乙烯(PE)和聚氯乙烯(PVC)2种材质保鲜膜,考察3种食品模拟物(水、50%乙醇和正己烷)中微塑料和邻苯二甲酸酯(PAEs)的浸出行为,并探究浸出PAEs对斑马鱼胚胎发育的影响。结果表明,从PE保鲜膜和PVC保鲜膜中浸出的总体微塑料平均丰度分别为(2.67SymbolqB@0.82)个·(100 mL)-1和(3.78±0.92)个·(100 mL)-1。PVC保鲜膜浸出微塑料的粒径集中在500~1 000 μm范围(55.9%),而PE保鲜膜浸出粒径为<500 μm的微塑料占比最大(74.1%)。PVC保鲜膜含醇和油脂环境下的实验组对斑马鱼胚胎发育有显著影响,可诱导胚胎出现心率失常、心包囊肿和脊柱弯曲等症状,PVC保鲜膜在这2种环境下均检测到PAEs的迁移。相比于PE保鲜膜,PVC保鲜膜的浸出毒性需引起重视。
  • 加载中
  • Muncke J, Backhaus T, Geueke B, et al. Scientific challenges in the risk assessment of food contact materials[J]. Environmental Health Perspectives, 2017, 125(9):095001
    Sanchis Y, Yusà V, Coscollà C. Analytical strategies for organic food packaging contaminants[J]. Journal of Chromatography A, 2017, 1490:22-46
    de Leo F, Coluccia B, Miglietta P P, et al. Food contact materials recalls and international trade relations:An analysis of the Nexus between RASFF notifications and product origin[J]. Food Control, 2021, 120:107518
    Hu Y J, Du Z X, Sun X C, et al. Non-targeted analysis and risk assessment of non-volatile compounds in polyamide food contact materials[J]. Food Chemistry, 2021, 345:128625
    Muncke J. Exposure to endocrine disrupting compounds via the food chain:Is packaging a relevant source?[J]. The Science of the Total Environment, 2009, 407(16):4549-4559
    Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782
    Groh K J, Backhaus T, Carney-Almroth B, et al. Food packaging in the circular economy:Overview of known plastic packaging-associated chemicals and their hazards[J]. Science of the Total Environment, 2019, 651:3253-3268
    张玉霞, 杨涛. 关于构建塑料包装废弃物的分类、收集与管理体系的思考[J]. 中国塑料, 2021, 35(8):21-29

    Zhang Y X, Yang T. Thinkings on establishment of systems for sorting, collecting and managing plastics packaging waste[J]. China Plastics, 2021, 35(8):21-29(in Chinese)

    Rodrigues M O, Abrantes N, Gonçalves F J M, et al. Impacts of plastic products used in daily life on the environment and human health:What is known?[J]. Environmental Toxicology and Pharmacology, 2019, 72:103239
    Geueke B, Groh K, Muncke J. Food packaging in the circular economy:Overview of chemical safety aspects for commonly used materials[J]. Journal of Cleaner Production, 2018, 193:491-505
    Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    Schymanski D, Goldbeck C, Humpf H U, et al. Analysis of microplastics in water by micro-Raman spectroscopy:Release of plastic particles from different packaging into mineral water[J]. Water Research, 2018, 129:154-162
    Hernandez L M, Xu E G, Larsson H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental Science & Technology, 2019, 53(21):12300-12310
    Cox K D, Covernton G A, Davies H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12):7068-7074
    Guzzetti E, Sureda A, Tejada S, et al. Microplastic in marine organism:Environmental and toxicological effects[J]. Environmental Toxicology and Pharmacology, 2018, 64:164-171
    Wright S L, Thompson R C, Galloway T S. The physical impacts of microplastics on marine organisms:A review[J]. Environmental Pollution, 2013, 178:483-492
    Rahman A, Sarkar A, Yadav O P, et al. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps:A scoping review[J]. The Science of the Total Environment, 2021, 757:143872
    Arfaeinia L, Dobaradaran S, Nasrzadeh F, et al. Phthalate acid esters (PAEs) in highly acidic juice packaged in polyethylene terephthalate (PET) container:Occurrence, migration and estrogenic activity-associated risk assessment[J]. Microchemical Journal, 2020, 155:104719
    Cao X L, Zhao W, Churchill R, et al. Occurrence of di-(2-ethylhexyl) adipate and phthalate plasticizers in samples of meat, fish, and cheese and their packaging films[J]. Journal of Food Protection, 2014, 77(4):610-620
    Sapozhnikova Y. Non-targeted screening of chemicals migrating from paper-based food packaging by GC-Orbitrap mass spectrometry[J]. Talanta, 2021, 226:122120
    Lu S, Gao X, Hu C Y, et al. Heavy metal release from irradiated LDPE/nanometal composite films into food simulants[J]. Food Packaging and Shelf Life, 2020, 26:100571
    Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics:Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344:179-199
    Grob K, Biedermann M, Scherbaum E, et al. Food contamination with organic materials in perspective:Packaging materials as the largest and least controlled source? A view focusing on the European situation[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(7):529-535
    de Anda-Flores Y B, Cordón-Cardona B A, González-León A, et al. Effect of assay conditions on the migration of phthalates from polyvinyl chloride cling films used for food packaging in México[J]. Food Packaging and Shelf Life, 2021, 29:100684
    Wang X H, Xu M T, Yang A Q, et al. Health risks of population exposure to phthalic acid esters through the use of plastic containers for takeaway food in China[J]. Science of the Total Environment, 2021, 785:147347
    Fasano E, Bono-Blay F, Cirillo T, et al. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging[J]. Food Control, 2012, 27(1):132-138
    Senathirajah K, Attwood S, Bhagwat G, et al. Estimation of the mass of microplastics ingested:A pivotal first step towards human health risk assessment[J]. Journal of Hazardous Materials, 2021, 404(Pt B):124004
    Xu Z N, Xiong X, Zhao Y H, et al. Pollutants delivered every day:Phthalates in plastic express packaging bags and their leaching potential[J]. Journal of Hazardous Materials, 2020, 384:121282
    Wang X J, Song M, Liu S T, et al. Analysis of phthalate plasticizer migration from PVDC packaging materials to food simulants using molecular dynamics simulations and artificial neural network[J]. Food Chemistry, 2020, 317:126465
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品接触材料及制品迁移试验通则:GB 31604.1-2015[S]. 北京:中国标准出版社, 2016
    Yang D Q, Shi H H, Li L, et al. Microplastic pollution in table salts from China[J]. Environmental Science & Technology, 2015, 49(22):13622-13627
    中华人民共和国生态环境部. 水质急性毒性的测定斑马鱼卵法:HJ 1069-2019[S]. 北京:中国标准出版社, 2019
    Nagel R. DarT:The embryo test with the zebrafish Danio rerio:A general model in ecotoxicology and toxicology[J]. ALTEX, 2002, 19(Suppl.1):38-48
    薛柯, 许霞, 薛银刚, 等. 基于斑马鱼全生命周期毒性测试的研究进展[J]. 生态毒理学报, 2019, 14(5):83-96

    Xue K, Xu X, Xue Y G, et al. Research progress of life-cycle toxicity test of zebrafish[J]. Asian Journal of Ecotoxicology, 2019, 14(5):83-96(in Chinese)

    Du F N, Cai H W, Zhang Q, et al. Microplastics in take-out food containers[J]. Journal of Hazardous Materials, 2020, 399:122969
    Fadare O O, Wan B, Guo L H, et al. Microplastics from consumer plastic food containers:Are we consuming it?[J]. Chemosphere, 2020, 253:126787
    Xu X, Jian Y, Xue Y G, et al. Microplastics in the wastewater treatment plants (WWTPs):Occurrence and removal[J]. Chemosphere, 2019, 235:1089-1096
    Zhang Y L, Gao T G, Kang S C, et al. Importance of atmospheric transport for microplastics deposited in remote areas[J]. Environmental Pollution, 2019, 254(Pt A):112953
    Wright S L, Ulke J, Font A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport[J]. Environment International, 2020, 136:105411
    Cai L Q, Wang J D, Peng J P, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan City, China:Preliminary research and first evidence[J]. Environmental Science and Pollution Research International, 2017, 24(32):24928-24935
    Dris R, Gasperi J, Mirande C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments[J]. Environmental Pollution, 2017, 221:453-458
    Catarino A I, Macchia V, Sanderson W G, et al. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal[J]. Environmental Pollution, 2018, 237:675-684
    Nobre C R, Santana M F M, Maluf A, et al. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata:Echinoidea)[J]. Marine Pollution Bulletin, 2015, 92(1-2):99-104
    Gandara e Silva P P, Nobre C R, Resaffe P, et al. Leachate from microplastics impairs larval development in brown mussels[J]. Water Research, 2016, 106:364-370
    Wang X Y, Okoffo E D, Banks A P, et al. Phthalate esters in face masks and associated inhalation exposure risk[J]. Journal of Hazardous Materials, 2022, 423:127001
    Han Y, Cheng J L, Tang Z W, et al. Widespread occurrence of phthalates in popular take-out food containers from China and the implications for human exposure[J]. Journal of Cleaner Production, 2021, 290:125851
    赵电波, 张丽尧, 白艳红. 食品级塑料包装袋中邻苯二甲酸二丁酯和邻苯二甲酸二辛基酯向高温油炸食品中迁移的研究[J]. 食品安全质量检测学报, 2013, 4(4):1061-1066

    Zhao D B, Zhang L Y, Bai Y H. Migration of dibutyl phthalate and di-n-octyl phthalate in food-grade plastic packaging bags applied in fried food packaging[J]. Journal of Food Safety & Quality, 2013, 4(4):1061-1066(in Chinese)

    Goulas A E, Zygoura P, Karatapanis A, et al. Migration of di(2-ethylhexyl) adipate and acetyltributyl citrate plasticizers from food-grade PVC film into sweetened sesame paste (halawa tehineh):Kinetic and penetration study[J]. Food and Chemical Toxicology, 2007, 45(4):585-591
    程惠峰, 杨祖彬, 赵媛. 食盐软塑包装PAEs增塑剂的迁移规律研究[J]. 包装工程, 2011, 32(15):58-61

    Cheng H F, Yang Z B, Zhao Y. Research on PAEs plasticizer migration rule of salt flexible plastic packaging[J]. Packaging Engineering, 2011, 32(15):58-61(in Chinese)

    Staples C A, Adams W J, Parkerton T F, et al. Aquatic toxicity of eighteen phthalate esters[J]. Environmental Toxicology and Chemistry, 1997, 16(5):875-891
    何秀婷, 李潇, 杨永涛, 等. 邻苯二甲酸酯对斑马鱼胚胎发育的联合毒性[J]. 中山大学学报:自然科学版, 2010, 49(5):101-106

    , 112 He X T, Li X, Yang Y T, et al. Effects of combined toxicity of phthalic acid esters on zebrafish embryonic development[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(5):101-106, 112(in Chinese)

    Singh S, Li S S. Phthalates:Toxicogenomics and inferred human diseases[J]. Genomics, 2011, 97(3):148-157
    Jamali M, Rogerson P J, Wilton S, et al. Nkx2-5 activity is essential for cardiomyogenesis[J]. The Journal of Biological Chemistry, 2001, 276(45):42252-42258
    Moskowitz I P G, Pizard A, Patel V V, et al. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system[J]. Development, 2004, 131(16):4107-4116
    Pradhan L, Gopal S, Li S C, et al. Intermolecular interactions of cardiac transcription factors NKX2.5 and TBX5[J]. Biochemistry, 2016, 55(12):1702-1710
    Balci M M, Akdemir R. NKX2.5 mutations and congenital heart disease:Is it a marker of cardiac anomalies?[J]. International Journal of Cardiology, 2011, 147(3):e44-e45
    Polk R C, Gergics P, Steimle J D, et al. The pattern of congenital heart defects arising from reduced Tbx5 expression is altered in a Down syndrome mouse model[J]. BMC Developmental Biology, 2015, 15:30
    Sun G J, Liu K C. Developmental toxicity and cardiac effects of butyl benzyl phthalate in zebrafish embryos[J]. Aquatic Toxicology, 2017, 192:165-170
    穆希岩, 李成龙, 黄瑛, 等. 两种邻苯二甲酸酯类污染物对斑马鱼胚胎发育的影响[J]. 中国环境科学, 2017, 37(9):3566-3575

    Mu X Y, Li C L, Huang Y, et al. Effects of two phthalate esters on zebrafish embryos[J]. China Environmental Science, 2017, 37(9):3566-3575(in Chinese)

    Pfuderer P, Francis A A. Phthalate esters:Heartrate depressors in the goldfish[J]. Bulletin of Environmental Contamination and Toxicology, 1975, 13(3):275-279
    Deflorio-Barker S A, Turyk M E. Associations between bone mineral density and urinary phthalate metabolites among post-menopausal women:A cross-sectional study of NHANES data 2005-2010[J]. International Journal of Environmental Health Research, 2016, 26(3):326-345
    Roy N M, Zambrzycka E, Santangelo J. Butyl benzyl phthalate (BBP) induces caudal defects during embryonic development[J]. Environmental Toxicology and Pharmacology, 2017, 56:129-135
    Qian L, Liu J, Lin Z P, et al. Evaluation of the spinal effects of phthalates in a zebrafish embryo assay[J]. Chemosphere, 2020, 249:126144
    Gray R S, Wilm T P, Smith J, et al. Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations[J]. Developmental Biology, 2014, 386(1):72-85
    Rafael M S, Laizé V, Cancela M L. Identification of Sparus aurata bone morphogenetic protein 2:Molecular cloning, gene expression and in silico analysis of protein conserved features in vertebrates[J]. Bone, 2006, 39(6):1373-1381
    鞠黎, 楼跃, 王艳萍, 等. 多氯联苯暴露对斑马鱼脊柱形态及BMP-2、BMP-4基因表达的影响[J]. 南京医科大学学报:自然科学版, 2011, 31(9):1277-1281

    Ju L, Lou Y, Wang Y P, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish spinal morphology and the expression of BMP-2 and BMP-4 gene[J]. Acta Universitatis Medicinalis Nanjing:Natural Science, 2011, 31(9):1277-1281(in Chinese)

    Mu X Y, Chai T T, Wang K, et al. The developmental effect of difenoconazole on zebrafish embryos:A mechanism research[J]. Environmental Pollution, 2016, 212:18-26
  • 加载中
计量
  • 文章访问数:  3084
  • HTML全文浏览数:  3084
  • PDF下载数:  183
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-12
高宇, 许霞, 施昕澜, 张玲, 郭俊, 张秋亚, 彭明国, 薛银刚. 保鲜膜中微塑料和邻苯二甲酸酯浸出行为及斑马鱼胚胎毒性评价[J]. 生态毒理学报, 2022, 17(3): 44-55. doi: 10.7524/AJE.1673-5897.20211012003
引用本文: 高宇, 许霞, 施昕澜, 张玲, 郭俊, 张秋亚, 彭明国, 薛银刚. 保鲜膜中微塑料和邻苯二甲酸酯浸出行为及斑马鱼胚胎毒性评价[J]. 生态毒理学报, 2022, 17(3): 44-55. doi: 10.7524/AJE.1673-5897.20211012003
Gao Yu, Xu Xia, Shi Xinlan, Zhang Ling, Guo Jun, Zhang Qiuya, Peng Mingguo, Xue Yingang. Leaching Behavior and Evaluation of Zebrafish Embryo Toxicity of Microplastics and Phthalates in Plastic Wrap[J]. Asian journal of ecotoxicology, 2022, 17(3): 44-55. doi: 10.7524/AJE.1673-5897.20211012003
Citation: Gao Yu, Xu Xia, Shi Xinlan, Zhang Ling, Guo Jun, Zhang Qiuya, Peng Mingguo, Xue Yingang. Leaching Behavior and Evaluation of Zebrafish Embryo Toxicity of Microplastics and Phthalates in Plastic Wrap[J]. Asian journal of ecotoxicology, 2022, 17(3): 44-55. doi: 10.7524/AJE.1673-5897.20211012003

保鲜膜中微塑料和邻苯二甲酸酯浸出行为及斑马鱼胚胎毒性评价

    通讯作者: 许霞, E-mail: xuxia@cczu.edu.cn ;  薛银刚, E-mail: yzxyg@126.com
    作者简介: 高宇(1997—),男,硕士研究生,研究方向为生态毒理学,E-mail:763751356@qq.com
  • 1. 常州大学环境与安全工程学院, 常州 213164;
  • 2. 江苏省常州环境监测中心, 常州 213001
基金项目:

国家自然科学基金资助项目(21607017);水体污染控制与治理科技重大专项(2017ZX07202-01);国家环境保护标准项目(2015-9)

摘要: 保鲜膜是最常见的一类塑料食品接触材料,在生活中被广泛使用,但对于其在不同食品应用场景中有害物质的浸出情况及对生物可能构成的健康风险尚不明确。选取聚乙烯(PE)和聚氯乙烯(PVC)2种材质保鲜膜,考察3种食品模拟物(水、50%乙醇和正己烷)中微塑料和邻苯二甲酸酯(PAEs)的浸出行为,并探究浸出PAEs对斑马鱼胚胎发育的影响。结果表明,从PE保鲜膜和PVC保鲜膜中浸出的总体微塑料平均丰度分别为(2.67SymbolqB@0.82)个·(100 mL)-1和(3.78±0.92)个·(100 mL)-1。PVC保鲜膜浸出微塑料的粒径集中在500~1 000 μm范围(55.9%),而PE保鲜膜浸出粒径为<500 μm的微塑料占比最大(74.1%)。PVC保鲜膜含醇和油脂环境下的实验组对斑马鱼胚胎发育有显著影响,可诱导胚胎出现心率失常、心包囊肿和脊柱弯曲等症状,PVC保鲜膜在这2种环境下均检测到PAEs的迁移。相比于PE保鲜膜,PVC保鲜膜的浸出毒性需引起重视。

English Abstract

参考文献 (67)

返回顶部

目录

/

返回文章
返回