聚苯乙烯微塑料暴露对剑尾鱼肝脏代谢通路的影响

张彦坤, 杨兵坤, 谢鹏飞, 胡林勇, 赵新全, 徐世晓, 孙平. 聚苯乙烯微塑料暴露对剑尾鱼肝脏代谢通路的影响[J]. 生态毒理学报, 2022, 17(3): 35-43. doi: 10.7524/AJE.1673-5897.20210401001
引用本文: 张彦坤, 杨兵坤, 谢鹏飞, 胡林勇, 赵新全, 徐世晓, 孙平. 聚苯乙烯微塑料暴露对剑尾鱼肝脏代谢通路的影响[J]. 生态毒理学报, 2022, 17(3): 35-43. doi: 10.7524/AJE.1673-5897.20210401001
Zhang Yankun, Yang Bingkun, Xie Pengfei, Hu Linyong, Zhao Xinquan, Xu Shixiao, Sun Ping. Effects of Polystyrene Microplastics on Metabolism in Liver of Swordtail Fish[J]. Asian journal of ecotoxicology, 2022, 17(3): 35-43. doi: 10.7524/AJE.1673-5897.20210401001
Citation: Zhang Yankun, Yang Bingkun, Xie Pengfei, Hu Linyong, Zhao Xinquan, Xu Shixiao, Sun Ping. Effects of Polystyrene Microplastics on Metabolism in Liver of Swordtail Fish[J]. Asian journal of ecotoxicology, 2022, 17(3): 35-43. doi: 10.7524/AJE.1673-5897.20210401001

聚苯乙烯微塑料暴露对剑尾鱼肝脏代谢通路的影响

    作者简介: 张彦坤(1992—),男,硕士研究生,研究方向为水生毒理学,E-mail:1029263033@qq.com
    通讯作者: 孙平, E-mail: pingsunny@msn.com
  • 基金项目:

    “十二五”国家科技支撑计划项目(2014BAC05B04-04);青海省重点研发与转化计划项目(219-NK-173);河南省自然科学基金资助项目(182300410119);河南科技大学大学生研究训练计划项目(2020363)

  • 中图分类号: X171.5

Effects of Polystyrene Microplastics on Metabolism in Liver of Swordtail Fish

    Corresponding author: Sun Ping, pingsunny@msn.com
  • Fund Project:
  • 摘要: 微塑料已经成为水环境中的主要污染物,可能会对水生生物产生影响。将成年剑尾鱼暴露在直径5 μm、不同浓度的聚苯乙烯微塑料水体中72 h,检测急性暴露是否对剑尾鱼肝脏代谢产生干扰,以探讨微塑料的潜在毒性。结果表明,微塑料会导致剑尾鱼肝脏的代谢水平发生改变,在浓度为1×106 microspheres·L-1的低浓度组中,筛选出6种代谢水平发生改变的差异代谢物,共涉及16条代谢通路,这些代谢物与肝脏中的能量代谢、糖代谢、氨基酸代谢、炎症反应和氧化应激有关。在浓度为1×107 microspheres·L-1的高浓度组中,筛选出8种代谢水平发生改变的差异代谢物,共涉及19条代谢通路,这些代谢物与肝脏中的能量代谢、糖代谢、氨基酸代谢、炎症反应和氧化应激有关,并且脂代谢干扰与神经毒性有关的代谢物表达发生改变。从受干扰的代谢物的数量和代谢通路数量来看,微塑料浓度增加将会加深对水生生物的干扰。
  • 加载中
  • Rochman C M, Browne M A, Halpern B S, et al. Policy:Classify plastic waste as hazardous[J]. Nature, 2013, 494(7436):169-171
    de Sá L C, Oliveira M, Ribeiro F, et al. Studies of the effects of microplastics on aquatic organisms:What do we know and where should we focus our efforts in the future?[J]. The Science of the Total Environment, 2018, 645:1029-1039
    Prata J C, Silva A L P, Walker T R, et al. COVID-19 pandemic repercussions on the use and management of plastics[J]. Environmental Science & Technology, 2020, 54(13):7760-7765
    Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605
    Thompson R C, Moore C J, vom Saal F S, et al. Plastics, the environment and human health:Current consensus and future trends[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526):2153-2166
    Takahashi K, Hosie G, Kitchener J, et al. Report on the Southern Ocean continuous plankton recorder (SO-CPR) standards workshop:SCAR expert group on CPR research[J]. Antarctic Record, 2011, 55(3):279-286
    Kanhai D K, Gårdfeldt K, Lyashevska O, et al. Microplastics in sub-surface waters of the Arctic Central Basin[J]. Marine Pollution Bulletin, 2018, 130:8-18
    Jamieson A J, Brooks L S R, Reid W D K, et al. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth[J]. Royal Society Open Science, 2019, 6(2):180667
    Napper I E, Davies B F R, Clifford H, et al. Reaching new heights in plastic pollution:Preliminary findings of microplastics on mount Everest[J]. One Earth, 2020, 3(5):621-630
    Yang W F, Gao X X, Wu Y X, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2020, 195:110484
    李爱峰, 李方晓, 邱江兵, 等. 水环境中微塑料的污染现状、生物毒性及控制对策[J]. 中国海洋大学学报:自然科学版, 2019, 49(10):88-100

    Li A F, Li F X, Qiu J B, et al. Pollution status, biological toxicity and control strategy of microplastics in water environments:A review[J]. Periodical of Ocean University of China, 2019, 49(10):88-100(in Chinese)

    Yin L Y, Chen B J, Xia B, et al. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii)[J]. Journal of Hazardous Materials, 2018, 360:97-105
    Watts A J R, Lewis C, Goodhead R M, et al. Uptake and retention of microplastics by the shore crab Carcinus maenas[J]. Environmental Science & Technology, 2014, 48(15):8823-8830
    Watts A J, Urbina M A, Goodhead R, et al. Effect of microplastic on the gills of the shore crab Carcinus maenas[J]. Environmental Science & Technology, 2016, 50(10):5364-5369
    Pannetier P, Morin B, le Bihanic F, et al. Environmental samples of microplastics induce significant toxic effects in fish larvae[J]. Environment International, 2020, 134:105047
    Lima A R A, Barletta M, Costa M F. Seasonal distribution and interactions between plankton and microplastics in a tropical estuary[J]. Estuarine, Coastal and Shelf Science, 2015, 165:213-225
    Ding J N, Zhang S S, Razanajatovo R M, et al. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus)[J]. Environmental Pollution, 2018, 238:1-9
    Qiang L Y, Cheng J P. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2019, 176:226-233
    Chen Q Q, Lackmann C, Wang W Y, et al. Microplastics lead to hyperactive swimming behaviour in adult zebrafish[J]. Aquatic Toxicology, 2020, 224:105521
    Barboza L G A, Lopes C, Oliveira P, et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure[J]. The Science of the Total Environment, 2020, 717:134625
    Teuten E L, Saquing J M, Knappe D R U, et al. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526):2027-2045
    Qiao R X, Deng Y F, Zhang S H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236:124334
    Mazurais D, Ernande B, Quazuguel P, et al. Evaluation of the impact of polyethylene microbeads ingestion in European Sea bass (Dicentrarchus labrax) larvae[J]. Marine Environmental Research, 2015, 112(Pt A):78-85
    Jabeen K, Li B W, Chen Q Q, et al. Effects of virgin microplastics on goldfish (Carassius auratus)[J]. Chemosphere, 2018, 213:323-332
    Wen B, Zhang N, Jin S R, et al. Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid[J]. Aquatic Toxicology, 2018, 195:67-76
    Bhagat J, Zang L Q, Nishimura N, et al. Zebrafish:An emerging model to study microplastic and nanoplastic toxicity[J]. The Science of the Total Environment, 2020, 728:138707
    Chen Q Q, Gundlach M, Yang S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. The Science of the Total Environment, 2017, 584-585:1022-1031
    Wan Z Q, Wang C Y, Zhou J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217:646-658
    Han J, Fang Z Q. Estrogenic effects, reproductive impairment and developmental toxicity in ovoviparous swordtail fish (Xiphophorus helleri) exposed to perfluorooctane sulfonate (PFOS)[J]. Aquatic Toxicology, 2010, 99(2):281-290
    Wilhelm F D. Fish antioxidant defenses:A comparative approach[J]. Brazilian Journal of Medical and Biological Research, 1996, 29(12):1735-1742
    Capó X, Company J J, Alomar C, et al. Long-term exposure to virgin and seawater exposed microplastic enriched-diet causes liver oxidative stress and inflammation in gilthead seabream Sparus aurata, Linnaeus 1758[J]. The Science of the Total Environment, 2021, 767:144976
    Zhao Y, Bao Z W, Wan Z Q, et al. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish[J]. The Science of the Total Environment, 2020, 710:136279
    Wan Z Q, Wang C Y, Zhou J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217:646-658
    Ory N C, Gallardo C, Lenz M, et al. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish[J]. Environmental Pollution, 2018, 240:566-573
    Tian J, He G, Mai K S, et al. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio)[J]. Fish Physiology and Biochemistry, 2015, 41(3):773-787
    姚丹, 吴昊, 江敏. 全氟辛烷磺酸对斑马鱼肝脏影响机制的代谢组学研究[J]. 生态毒理学报, 2018, 13(6):97-106

    Yao D, Wu H, Jiang M. Effects of perfluorooctane sulfonate on the liver metabolism of Danio rerio[J]. Asian Journal of Ecotoxicology, 2018, 13(6):97-106(in Chinese)

    Tahiliani A G, Beinlich C J. Pantothenic acid in health and disease[J]. Vitamins & Hormones, 1991, 46:165-228
    Tabatabaie L, Klomp L W, Berger R, et al. L-serine synthesis in the central nervous system:A review on serine deficiency disorders[J]. Molecular Genetics and Metabolism, 2010, 99(3):256-262
    de Koning T J, Snell K, Duran M, et al. L-serine in disease and development[J]. The Biochemical Journal, 2003, 371(Pt 3):653-661
  • 加载中
计量
  • 文章访问数:  2630
  • HTML全文浏览数:  2630
  • PDF下载数:  183
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-04-01
张彦坤, 杨兵坤, 谢鹏飞, 胡林勇, 赵新全, 徐世晓, 孙平. 聚苯乙烯微塑料暴露对剑尾鱼肝脏代谢通路的影响[J]. 生态毒理学报, 2022, 17(3): 35-43. doi: 10.7524/AJE.1673-5897.20210401001
引用本文: 张彦坤, 杨兵坤, 谢鹏飞, 胡林勇, 赵新全, 徐世晓, 孙平. 聚苯乙烯微塑料暴露对剑尾鱼肝脏代谢通路的影响[J]. 生态毒理学报, 2022, 17(3): 35-43. doi: 10.7524/AJE.1673-5897.20210401001
Zhang Yankun, Yang Bingkun, Xie Pengfei, Hu Linyong, Zhao Xinquan, Xu Shixiao, Sun Ping. Effects of Polystyrene Microplastics on Metabolism in Liver of Swordtail Fish[J]. Asian journal of ecotoxicology, 2022, 17(3): 35-43. doi: 10.7524/AJE.1673-5897.20210401001
Citation: Zhang Yankun, Yang Bingkun, Xie Pengfei, Hu Linyong, Zhao Xinquan, Xu Shixiao, Sun Ping. Effects of Polystyrene Microplastics on Metabolism in Liver of Swordtail Fish[J]. Asian journal of ecotoxicology, 2022, 17(3): 35-43. doi: 10.7524/AJE.1673-5897.20210401001

聚苯乙烯微塑料暴露对剑尾鱼肝脏代谢通路的影响

    通讯作者: 孙平, E-mail: pingsunny@msn.com
    作者简介: 张彦坤(1992—),男,硕士研究生,研究方向为水生毒理学,E-mail:1029263033@qq.com
  • 1. 河南科技大学动物科技学院, 洛阳 471003;
  • 2. 中国科学院西北高原生物研究所, 西宁 810008
基金项目:

“十二五”国家科技支撑计划项目(2014BAC05B04-04);青海省重点研发与转化计划项目(219-NK-173);河南省自然科学基金资助项目(182300410119);河南科技大学大学生研究训练计划项目(2020363)

摘要: 微塑料已经成为水环境中的主要污染物,可能会对水生生物产生影响。将成年剑尾鱼暴露在直径5 μm、不同浓度的聚苯乙烯微塑料水体中72 h,检测急性暴露是否对剑尾鱼肝脏代谢产生干扰,以探讨微塑料的潜在毒性。结果表明,微塑料会导致剑尾鱼肝脏的代谢水平发生改变,在浓度为1×106 microspheres·L-1的低浓度组中,筛选出6种代谢水平发生改变的差异代谢物,共涉及16条代谢通路,这些代谢物与肝脏中的能量代谢、糖代谢、氨基酸代谢、炎症反应和氧化应激有关。在浓度为1×107 microspheres·L-1的高浓度组中,筛选出8种代谢水平发生改变的差异代谢物,共涉及19条代谢通路,这些代谢物与肝脏中的能量代谢、糖代谢、氨基酸代谢、炎症反应和氧化应激有关,并且脂代谢干扰与神经毒性有关的代谢物表达发生改变。从受干扰的代谢物的数量和代谢通路数量来看,微塑料浓度增加将会加深对水生生物的干扰。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回