腐殖酸对纳米氧化锌致斑马鱼毒性的缓解作用

秦春怡, 杜青平, 罗宏威, 林俊熙, 李美君, 许燕滨. 腐殖酸对纳米氧化锌致斑马鱼毒性的缓解作用[J]. 生态毒理学报, 2022, 17(3): 201-209. doi: 10.7524/AJE.1673-5897.20210330002
引用本文: 秦春怡, 杜青平, 罗宏威, 林俊熙, 李美君, 许燕滨. 腐殖酸对纳米氧化锌致斑马鱼毒性的缓解作用[J]. 生态毒理学报, 2022, 17(3): 201-209. doi: 10.7524/AJE.1673-5897.20210330002
Qin Chunyi, Du Qingping, Luo Hongwei, Lin Junxi, Li Meijun, Xu Yanbin. Mitigation Effects of Humic Acid on Toxicity of Zinc Oxide Nanoparticles (ZnO-NPs) on Zebrafish (Danio rerio)[J]. Asian journal of ecotoxicology, 2022, 17(3): 201-209. doi: 10.7524/AJE.1673-5897.20210330002
Citation: Qin Chunyi, Du Qingping, Luo Hongwei, Lin Junxi, Li Meijun, Xu Yanbin. Mitigation Effects of Humic Acid on Toxicity of Zinc Oxide Nanoparticles (ZnO-NPs) on Zebrafish (Danio rerio)[J]. Asian journal of ecotoxicology, 2022, 17(3): 201-209. doi: 10.7524/AJE.1673-5897.20210330002

腐殖酸对纳米氧化锌致斑马鱼毒性的缓解作用

    作者简介: 秦春怡(1996—),女,硕士研究生,研究方向为生态毒理学,E-mail:469454926@qq.com
    通讯作者: 杜青平, E-mail: qpdu2008@126.com
  • 基金项目:

    国家自然科学基金面上项目(41977340);山西省重点研发计划项目(201803D31054)

  • 中图分类号: X171.5

Mitigation Effects of Humic Acid on Toxicity of Zinc Oxide Nanoparticles (ZnO-NPs) on Zebrafish (Danio rerio)

    Corresponding author: Du Qingping, qpdu2008@126.com
  • Fund Project:
  • 摘要: 利用动态光散射(dynamic light scattering,DLS)探究了腐殖酸(humic acid,HA)对纳米氧化锌(ZnO-NPs)悬浮液Zeta电位和水动力直径的影响,并以斑马鱼为受试生物,将ZnO-NPs (0、1、5、10和20 mg·L-1)、ZnO-NPs (20 mg·L-1)+HA (0、3、6、12和24 mg·L-1,以碳计)对斑马鱼胚胎进行96 hpf暴露,研究ZnO-NPs对斑马鱼胚胎的急性毒性效应以及HA对ZnO-NPs致斑马鱼胚胎毒性的缓解作用及其机理。结果显示,ZnO-NPs在水中Zeta电位绝对值随浓度增加而降低,水动力直径增大,呈现浓度-效应关系,这表明ZnO-NPs在溶液中极易发生团聚。加入不同浓度的HA后,HA吸附在ZnO-NPs表面,增加了ZnO-NPs的Zeta电位绝对值,降低其水动力直径,这表明HA减少了ZnO-NPs的团聚。ZnO-NPs使斑马鱼胚胎的存活率降低,存在剂量-效应关系,而HA的加入使暴露在ZnO-NPs中的斑马鱼胚胎存活率升高,通过显微观察发现,ZnO-NPs团聚后易粘附于斑马鱼胚胎绒毛膜表面,导致了纳米颗粒与斑马鱼胚胎的接触概率和时间增加,HA的加入使胚胎绒毛膜表面粘附的纳米颗粒减少。HA的加入可显著降低生物有机体内的自由基水平,使抵御氧化应激的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性逐渐恢复正常。结果显示,HA的加入缓解了ZnO-NPs致斑马鱼胚胎的毒性,其作用机理主要通过降低ZnO-NPs的团聚作用及其引起的氧化应激行为。
  • 加载中
  • Mahana A, Guliy O I, Mehta S K. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae:Current status and future challenges[J]. Ecotoxicology and Environmental Safety, 2021, 208:111662
    Du J J, Zhang Y Y, Guo R L, et al. Harmful effect of nanoparticles on the functions of freshwater ecosystems:Insight into nanoZnO-polluted stream[J]. Chemosphere, 2019, 214:830-838
    Bhatt I, Tripathi B N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment[J]. Chemosphere, 2011, 82(3):308-317
    Heinlaan M, Ivask A, Blinova I, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus[J]. Chemosphere, 2008, 71(7):1308-1316
    Santo N, Fascio U, Torres F, et al. Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles:Does size matter?[J]. Water Research, 2014, 53:339-350
    Hou J, Liu H Q, Zhang S Y, et al. Mechanism of toxic effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio)[J]. Chemosphere, 2019, 229:206-213
    刘涛, 杜青平, 秦春怡, 等. nano-ZnO对斑马鱼鱼鳔发育毒性效应研究[J]. 环境科学学报, 2020, 40(1):290-298

    Liu T, Du Q P, Qin C Y, et al. Study on developmental toxic effects on the swim bladder of zebrafish exposed to nano-ZnO[J]. Acta Scientiae Circumstantiae, 2020, 40(1):290-298(in Chinese)

    Wu J Y, Jiang R F, Liu Q L, et al. Impact of different modes of adsorption of natural organic matter on the environmental fate of nanoplastics[J]. Chemosphere, 2021, 263:127967
    Slomberg D L, Ollivier P, Miche H, et al. Nanoparticle stability in lake water shaped by natural organic matter properties and presence of particulate matter[J]. The Science of the Total Environment, 2019, 656:338-346
    Islam M A, Morton D W, Johnson B B, et al. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species:A review[J]. Separation and Purification Technology, 2020, 247:116949
    Wall N A, Choppin G R. Humic acids coagulation:Influence of divalent cations[J]. Applied Geochemistry, 2003, 18(10):1573-1582
    刘振宇, 刘彬, 王丹, 等. 纳米材料在水生环境中的行为和转化[J]. 海河水利, 2015(2):67-70 Liu Z Y, Liu B, Wang D, et al. Behavior and conversion of nanomaterials in the aquatic environment[J]. Haihe Water Resources, 2015

    (2):67-70(in Chinese)

    Xiao B W, Wang X L, Yang J, et al. Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish:The mechanisms and influence of natural organic matter[J]. Ecotoxicology and Environmental Safety, 2020, 194:110454
    Shang E X, Li Y, Niu J F, et al. Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles[J]. Water Research, 2017, 124:595-604
    Dai H L, Sun T S, Han T, et al. Aggregation behavior of zinc oxide nanoparticles and their biotoxicity to Daphnia magna:Influence of humic acid and sodium alginate[J]. Environmental Research, 2020, 191:110086
    Kteeba S M, El-Adawi H I, El-Rayis O A, et al. Zinc oxide nanoparticle toxicity in embryonic zebrafish:Mitigation with different natural organic matter[J]. Environmental Pollution, 2017, 230:1125-1140
    Kteeba S M, El-Ghobashy A E, El-Adawi H I, et al. Exposure to ZnO nanoparticles alters neuronal and vascular development in zebrafish:Acute and transgenerational effects mitigated with dissolved organic matter[J]. Environmental Pollution, 2018, 242:433-448
    Jia M, Teng M M, Tian S N, et al. Developmental toxicity and neurotoxicity of penconazole enantiomers exposure on zebrafish (Danio rerio)[J]. Environmental Pollution, 2020, 267:115450
    Zhang Y, Meng T T, Guo X, et al. Humic acid alleviates the ecotoxicity of graphene-family materials on the freshwater microalgae Scenedesmus obliquus[J]. Chemosphere, 2018, 197:749-758
    Keattanong P, Wasukan N, Kuno M, et al. Synthesis, structural characterization, computational studies and stability evaluations of metal ions and ZnONPs complexes with dimercaptosuccinic acid[J]. Heliyon, 2021, 7(1):e05962
    Wu Q, Li G Y, Huo T B, et al. Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring[J]. The Science of the Total Environment, 2021, 774:145766
    刘倩, 杜青平, 刘涛, 等. 纳米氧化锌致大型溞的毒性效应特征[J]. 环境科学学报, 2019, 39(4):1332-1339

    Liu Q, Du Q P, Liu T, et al. Study on the toxicity effects of nanometer zinc oxide on Daphnia magna[J]. Acta Scientiae Circumstantiae, 2019, 39(4):1332-1339(in Chinese)

    Peng X H, Palma S, Fisher N S, et al. Effect of morphology of ZnO nanostructures on their toxicity to marine algae[J]. Aquatic Toxicology, 2011, 102(3-4):186-196
    Du W C, Tan W J, Peralta-Videa J R, et al. Interaction of metal oxide nanoparticles with higher terrestrial plants:Physiological and biochemical aspects[J]. Plant Physiology and Biochemistry, 2017, 110:210-225
    Molnár Á, Rónavári A, Bélteky P, et al. ZnO nanoparticles induce cell wall remodeling and modify ROS/RNS signalling in roots of Brassica seedlings[J]. Ecotoxicology and Environmental Safety, 2020, 206:111158
    Xiong D W, Fang T, Yu L P, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish:Acute toxicity, oxidative stress and oxidative damage[J]. The Science of the Total Environment, 2011, 409(8):1444-1452
    Nasrallah G K, Salem R, Da'as S, et al. Biocompatibility and toxicity of novel iron chelator starch-deferoxamine (S-DFO) compared to zinc oxide nanoparticles to zebrafish embryo:An oxidative stress based apoptosis, physicochemical and neurological study profile[J]. Neurotoxicology and Teratology, 2019, 72:29-38
    Suriyaprabha R, Balu K S, Karthik S, et al. A sensitive refining of in vitro and in vivo toxicological behavior of green synthesized ZnO nanoparticles from the shells of Jatropha curcas for multifunctional biomaterials development[J]. Ecotoxicology and Environmental Safety, 2019, 184:109621
    Chen Y M, Ren C X, Ouyang S H, et al. Mitigation in multiple effects of graphene oxide toxicity in zebrafish embryogenesis driven by humic acid[J]. Environmental Science & Technology, 2015, 49(16):10147-10154
    Rawson D M, Zhang T, Kalicharan D, et al. Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio:A consideration of the structural and functional[J]. Aquaculture Research, 2000, 31(3):325-336
    Auffan M, Matson C W, Rose J, et al. Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos[J]. Nanotoxicology, 2014, 8(Suppl.1):167-176
    Kansara K, Kumar A, Karakoti A S. Combination of humic acid and clay reduce the ecotoxic effect of TiO2 NPs:A combined physico-chemical and genetic study using zebrafish embryo[J]. Science of the Total Environment, 2020, 698:134133
    Zhao X S, Ren X, Zhu R, et al. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos[J]. Aquatic Toxicology, 2016, 180:56-70
    Ighodaro O M, Akinloye O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX):Their fundamental role in the entire antioxidant defence grid[J]. Alexandria Journal of Medicine, 2018, 54(4):287-293
  • 加载中
计量
  • 文章访问数:  1937
  • HTML全文浏览数:  1937
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-30
秦春怡, 杜青平, 罗宏威, 林俊熙, 李美君, 许燕滨. 腐殖酸对纳米氧化锌致斑马鱼毒性的缓解作用[J]. 生态毒理学报, 2022, 17(3): 201-209. doi: 10.7524/AJE.1673-5897.20210330002
引用本文: 秦春怡, 杜青平, 罗宏威, 林俊熙, 李美君, 许燕滨. 腐殖酸对纳米氧化锌致斑马鱼毒性的缓解作用[J]. 生态毒理学报, 2022, 17(3): 201-209. doi: 10.7524/AJE.1673-5897.20210330002
Qin Chunyi, Du Qingping, Luo Hongwei, Lin Junxi, Li Meijun, Xu Yanbin. Mitigation Effects of Humic Acid on Toxicity of Zinc Oxide Nanoparticles (ZnO-NPs) on Zebrafish (Danio rerio)[J]. Asian journal of ecotoxicology, 2022, 17(3): 201-209. doi: 10.7524/AJE.1673-5897.20210330002
Citation: Qin Chunyi, Du Qingping, Luo Hongwei, Lin Junxi, Li Meijun, Xu Yanbin. Mitigation Effects of Humic Acid on Toxicity of Zinc Oxide Nanoparticles (ZnO-NPs) on Zebrafish (Danio rerio)[J]. Asian journal of ecotoxicology, 2022, 17(3): 201-209. doi: 10.7524/AJE.1673-5897.20210330002

腐殖酸对纳米氧化锌致斑马鱼毒性的缓解作用

    通讯作者: 杜青平, E-mail: qpdu2008@126.com
    作者简介: 秦春怡(1996—),女,硕士研究生,研究方向为生态毒理学,E-mail:469454926@qq.com
  • 广东工业大学环境科学与工程学院, 广州 510006
基金项目:

国家自然科学基金面上项目(41977340);山西省重点研发计划项目(201803D31054)

摘要: 利用动态光散射(dynamic light scattering,DLS)探究了腐殖酸(humic acid,HA)对纳米氧化锌(ZnO-NPs)悬浮液Zeta电位和水动力直径的影响,并以斑马鱼为受试生物,将ZnO-NPs (0、1、5、10和20 mg·L-1)、ZnO-NPs (20 mg·L-1)+HA (0、3、6、12和24 mg·L-1,以碳计)对斑马鱼胚胎进行96 hpf暴露,研究ZnO-NPs对斑马鱼胚胎的急性毒性效应以及HA对ZnO-NPs致斑马鱼胚胎毒性的缓解作用及其机理。结果显示,ZnO-NPs在水中Zeta电位绝对值随浓度增加而降低,水动力直径增大,呈现浓度-效应关系,这表明ZnO-NPs在溶液中极易发生团聚。加入不同浓度的HA后,HA吸附在ZnO-NPs表面,增加了ZnO-NPs的Zeta电位绝对值,降低其水动力直径,这表明HA减少了ZnO-NPs的团聚。ZnO-NPs使斑马鱼胚胎的存活率降低,存在剂量-效应关系,而HA的加入使暴露在ZnO-NPs中的斑马鱼胚胎存活率升高,通过显微观察发现,ZnO-NPs团聚后易粘附于斑马鱼胚胎绒毛膜表面,导致了纳米颗粒与斑马鱼胚胎的接触概率和时间增加,HA的加入使胚胎绒毛膜表面粘附的纳米颗粒减少。HA的加入可显著降低生物有机体内的自由基水平,使抵御氧化应激的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性逐渐恢复正常。结果显示,HA的加入缓解了ZnO-NPs致斑马鱼胚胎的毒性,其作用机理主要通过降低ZnO-NPs的团聚作用及其引起的氧化应激行为。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回